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SUMMARY

A study was conduocted by Gensral Dynamics Convair Aesrospace Division for the
NASA Johnson Space Center under NASA Contract NAS9=13012 to détermine the -
axternal effects caused by operation of the réaction control system (RCS) during
antry of the Shuttle Orbiter. The North American Rockwell Internatiotial Prelim-
inary Requirements Reéview (PRR) configuration was used in assessing the effeots
of the proposed RCS instullation on control amplification factors and asrodynamic
heating, 3

Applicabls analytic and/or empiricdl methods were identified from a review of .
available material, These efforts concentrated on jet plume - external flow inter-
dotion effects, which a8 shown latér, did not prove to bé the significant effect, -
Analytic methods exist for two-dimensional jets while empirical results must be
relied on for three-dimensional jets. An experimental program was established
to extenid empirical methods to the PRR configuration. - ,

Tests werd conducted by Convair in the NASA Ames Research Center at Mach 7.4 .
and the NASA Langley Research Center at Mach numbers 4.0, 2,95 and 2,6, Force
data were obtained at 4ll conditions with hoat transfer data also obtained in the high
Mach number tost. A desoription of the simulation parameters and test programs
as oconducted are presented along with & discussion of the final data and analysis

of results, :

Foroe data were obtained for the basic airfrume characteristios plus induced
offects when the RCS is operating; the thrusters themselves being non-metric in

the aft position on the OMS pods, Resulting sontrol amplification and/or coupling
were derived and their effects on the aerodynamic stability and control of the
orbiter and the RCS thrust determinsd, Control reversal with roll and pitch RCS
and strong pitoh coupling when using ths yaw RCS were the predominant effects,
ocaused primarily by jet plums impingethent oh ajacent surfaces and not plume-flow
field interactions in the classic senss,

A limitad assessment of altérnate ROS looations pointed to possible alleviation of
conitrol problems, with aacaptable heating design constraints,by relocation of nose
down pitsh RCS jets on the bottom of the aft body flap.

Aerédynainic heating andlyses limited to the OMS pod based on available methods
and éxperiteéntsl data indicdte & heating problem, which will reguire local increase
i# insuiation thicknass to maintain atceptable bond liné tériparatures.,

Finally an empirical model of the HCS jet plume impingethent/interastion stability
and contfol effeats was developed from the dats base and used, along with the aero-
dynaniic heatifig andlysis referred to above, t6 sstimate the vehisle aerodyndiiics
and aurodynamic pod heating for the PRR configiration along an entfy trajectory.
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1,0 INTRODUCTION

Control of the Space Shuttle Orbiter in orbit is provided by a reaction control system
(RCS), by aerodynamic surfaces during the approach and landing, and by the com=
bination of reaction control and aerodynamic controls from entry through transition.
During entry the control requirements are shared with the aerodynamic controls
being used to trim and maneuver the vehicle while the reaction controls are used to
provide the dynamic damping of the vehicles response to maneuvers and dgtmospheric
disturbances. Figure 1-1 presents an entry profile showing the regions of reaction
control, combined control, and aetrodynamic control for a representative shuttle
orbiter entry.

The effect of lateral jet plume inducing significant changes in the total vehicle
aerodynamic characteristics is well known as "jet interaction" and has been studied
for a number of years as a potential control scheme. Thus, RCS plume induced
disturbances cannot be ignored during the Shuttle orbiter entry but must be investi-
gated to determine the magnitudes of any aerodynamic interference forces and
moments resulting from RCS operation in order that the control system performance
can be verified and its weight minimized,

This report documents the work performed under NASA Contract NAS 9-13012, The
basic objectives of this program were to assess the aerodynamic interference effects
on a representative Space Shuttle orbiter induced by the reaction control system jets
interacting with the external flow over the vehicle and to obtain force and heat transfer
data of these interference effects.,

The study was conducted in five phases:

a) Literature Survey and Test Parameter Selection
b)  Model Design, Fabrication, and Calibration

¢) Wind Tunnel Tests

d) Data Analysis

¢) Configuration Evaluation

and the results are documented in this report.

Reference 1 presents the test data for the force tests. The primary tests were'per=
formed at a nominal Mach number of 4,0 with Mach effects assessed at Mach numbers

of 2.5, 2,95 and a very limited set at Mach 7.4, The tests were performed primarily

at Reynolds numbers of 1,0 x 108/ft and 3,0 x 108/ft with a limited amount being obtained
at 5 x 108/ft to assess Reynolds number effects, The plume simulation was accomplished




CABD-~NAS-73-020

using tuntiel auxiliary air as a noold gas" simulation through soaled rocket nozzles, The
rocket nozzles were mounted separaté from tha model so that the forces maéasured were
of the vehicle and interference only.

During the force test,pitch, roll, and yaw RCS nozzles were simuldted using nozzles
whose geometry was detarmined by matching full goale exit pressure ratio, monientum
ratio, and thrust ratioona reference entry trajpotory, The primary force test
variables were Mach, angle of attack, model geometry, and nozzle supply pressute,

The heat transfer tests were performed at a Mach number of 7,4 usifig temperature
getisitive paints as the means of obtainixég heating data, The heating data were
obtained at a Reynolds number of 3 x 10 /tt, angles of attack of 26, 30, and 35 de-
grees and yaw angles of 0 and 5 degrees. The plumes were simulated using nitrogen
as the test gas with helium used for two runs, The yaw nozzle was the primary nozzle
simulated and heat transfer data was only taken on the OMS pod containing the RCS
package, Primary test variables were angles of attack and yaw.

1n addition to the force and heat transfer data, surface flow visunlization was obtained
at Mach 7.4 asing a titanium dioxide oil mixture and at Mach 4 using a fluorescent oil
technique,

The configuration chosen to perform this study was the preliminary requirements
review (PRR) configuration of the space shuttle orbiter showh in Figure 1-2, The
regotion control system used during entry is located in the Orbital Maneuvering
System (OMS) pods locdted on the rear of the body at the base of the fin, Figure 1-3
shows the location of the thrusters on the OMS pod. Each pod contains 12 engines
with 4 1n the yaw plane and 4 firing up and 4 firing down in the vertical plane. A
nominal etitry uses only 2 of the 4 engines in each plane, however, pitch control is
cbtained by using the vertical thrusters in both pods symmetrically and roll control
by asymmetrio firing of the vertical thrusters,
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Figute 1~3, Rear RCS Packnge Location
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2,0 ANALYTIC METHODS

2,1 LITERATURE SURVEY

In the beginning of this study it was assumed that the primary interdotion would be
olassic jet interdotion between the flow along the side of the body and the yaw jets.
1t was envisioned at that time extensive interaction would ocour between the yaw jets
and the fluw over the OMS pods. The RCS jets dre far from the wing and vertical
fin so that impingement on and interdctions with wing and fin flow weré oxpected to
be small,

Therefore, the objectives of the literature survey at the sturt of the program were to
review dvailable experimental data, correlation techniques and analytical procedures
for separated hypersonic flow due to lateral jet interference =pplicable to the RCS
thtusters for entry vehioles, An extensive literature search was performed both on
a NASA linear tape search and a DDC search on jet and cavity effects under compeny-
fuided research, More than 1000 report titles were obtained, of which approximately
140 wers found of interest to this study. The key objective was to find all experimen-
tal and analytical data pertaining to locdl pressare and heat transfer distribution due
to cavity and jet interference and these references are found in Appendix A,

The reports which were fourd most suitable for cavity effects are those presented by
the investigation of reference A-1 through A-24, The literature surveys for documents
applicable to the jet-flow field interaction are those of references A«21 through A=144,

Analytical techniques which define the jet-stream interaction problem for two-dimen-
sional jets (slot orifices) are fairly well described by ths models utilized for numerous
studies such as by Vaughan, Barnes, et al, Thayer and Kaufman, references A-134,
-106, -141, and-118, for both supersonic and sonic jets interacting with & high speed
stream. The description of the three-dimensional flow field resulting from the dis-
tarbance of 4 transverse ciroular jot with a stream is more difficult to define and
most of the investigations utilized experimental data for their analysis, The free
stroam and jet gas parameters hecome important considerations to define the intere
action, The majority of the investigations were initiated to obtain the jet-stream inter-
forence force augmentation ot surface loading, The studies of Strike, Bilig, et al and
Wilson, reference A-122, A-143, and A-132, resulted in some description of the three~
dimensional flow field, however, little or no attention has been given to the heat trans-
for problam, Only the experimental results presented by Brevig and Strike in
reforonces A=22 through A-24 were found to be specifically applicable to this study
and to the OMS pod heat transfer analysis,

The test tesults showed, however, that the plume interactions far from the nozzle
interacting with the separated flow over the wing tip (yaw nozzle) or impinging on the
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wing trailing edge (pitchi/roll nozzle) are more jmportant to the induced momehts ot
the vehicle and the resulting control offectiveness, Thus a limited survey was made
of plume impingement and plume interactions which 18 presented in Appendix B. No
guitable documents were found for these problems,

2,2 JET INTERACTION ANALYTIC MODEL

An analytic model of the classic jet {nteraction effects was developed from available infor-
mation, and Figure 2-1 presents & sketch of a typical three-dimensional laminar jet-stream
{nteraction flow field constructed with the aid of the experimental data of references 2 and 3
along with the interferogram photograph of Figure 2-2, It can be observed thdt the

jet plume gots as a protuberance that causes the boundary layer to geparate around the
jet, Within the separation region, counter-rotating vortices are formed and where they
meet and turtt downward, a stagnation region is experienced, As noted by the pressute
distribution, a plateau pressure is established, around the jet in the séparated region,
Also noted are the pressure rise to geveral times that of the plateau pressure dt the
stagnationline of tlie strong vortex flow region, Exception to this i8 a small region

just behind the jet where the pressure is first reduced by the interactioti and thett
{noreases at jet reattachment. The stagnation condition will causeé strong pressure and

a résulting heat transfer spike around the jet.. As indicated by the sketch, the jet '
flow is confined by an intercepting shock at the jet boundary and then passes throwgh

a strong shock, the Mach disk. The extent of the sgparation region may be determined

by the size of the jet protuberance or the height of the Mach disk, Around the jet,

the airstream will pass through a boundary layer separation shock and then through &

jet interaction bow wave, A reattachment shock is usually observed downstream of

the jet where it turns to follow the wall, In the interferogram photograph of Figure

2-2, the fringe line spacing corresponds to a variation in the local gas density, Ind

high density region such as a shock wave, the line density will increase, A top view

of the various flow regions over the surface, shown in Figure 2-1, was constructed

from experimental data results and photographic observations in laminar flow,

I turbulent flow, the jet-stream inwraction will affect only a small portion of the
surface, while for transitional flow vondition, the region of {nteraction will have
characteristios which combines hoth Inminax and tarbulent flow intaraction, The
experimental pressure data of Figure 2-3 indicate these characteristios,where the
different types of flow were obtained by inoreasing the angle of attack, It should

ba notad that in some cases the flow will separats from the leading edge of the surface
whon the jet dynamic pressure is much higher than the stream dynamio prossure

in laminar flow,

2,2,1 JET INDUCED PRESSURE - In order to predict the control amplification which
results from jot interaction it is necessary to predict the extent of the separated

region and the plateau pressute in this region and both of these quantities have
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been shown by Vaughdn (reference 4) and others to beé primarily dependent on the jet
penetration height or Mach disc height. Most of the data to date is baged on slot
{njecdon (2-D) or sohic orifice injection, However, for a supersonic orifice Adamson
and Nicholls (reference 5) have proposed the following correlation:

1/2

BD = 0,69 M [_f_PL] (2-1)
dj P:!,mb
‘While fot & 2-D slot injection Vaughan (referenice 4) used the following relation
Py
Hp = _g_ dt(vj /C t) ..1.)_1_ sinosy (2-2)
D

where sin o AV corrects for the flow deflection up to the disk in case of a noh-normal
injection,

The experimental data of references 2 and 3 presented in Figure 2-4 indicdte that
the penetration height,Hp, normalized to the jet exit diameter, dj, ofin bé correlated
by momentum ratio by the empirical relstion:

i 0.67
—9- =0, 2‘7(?—1—-)

) & rot @-3)

where & s the momentum flux
M2A
¢y =vy Py M7A
%f wy P ’sz‘Aj

and the jet conditions are taken at the nozzle exit.
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The normalized letigth of the disturbatice or the upstream separation distance, x R,
of reforence 3 appeared related to momentum ratio also and a lamifiar flow relatfg -

ship was obtained by curve fitting the data of Figure 2-6:

0.264
[:éﬂ] = 10,2 [3—1— ] (2-4)

It should be noted that these equations are based on air 4s the stream and jet gas
medium for a total temperatire ratio To j/'1‘o . of 0.4, The effect of the ratio of

specific heat , molecular weight and total temperature will be considered later.
Refaretice 3 found that a good approximation of the effective slope of the dividing

streamline is defined by the tangent of the jet penetration height, H, divided by the
upstréam separation distance, "sép

tan § ® H/:xmp (2-5)

The pressure in the separation region can then bé obtained from the obliqué shock

relation !
£t 2y M2 - (v, - 1= (v, + ¢
mag T‘--‘ Q' @
yME-E+1 (v_+1¢t + 0, =D (2-6)

where t= Psep/Pa
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These laminar flat plate relationships were found to bé inadequate for the
tarbulent flow case and the method used by Vaughan (reference 4) for turbulent flow

prediction would appear to be better. An empirical relation was obtained for the separa-

tion region pressure as funation of the upstream Mach number in reference 3 and is
shown in Figure 2-8 '

rp
ge + 0,
_P__p] =1+ 0,38 Mref @7
ref urh

’

while g turbulent separation distance empirical expression

. . 0.96
[_(s;gp,] = 0,636 [_;L_] 2-8)
] ref:

turb

is shown in Figures 2-7.

The peak pressure in the strong vortex region in laminar flow was further correlated
with the jet to stream momentum flux ratios and the data presented in Figure 2-8
gives the following empirical equation

. 0,165 - (2-9)
P d :
Pref lam %

A correlation of the location of this peak in laminar flow was also obtairied from
the data of Figure 2-9

= T LA

0495
x ®
[.52] = 0,796 [_J_ ]
yJ1am ® retd (2-10)

Typlcal pressure distributions in laminar and turbulent fiows on a flat plate around

a conical nozzle preduced by the interference of an expanding supersonic air jet
plume with an enveloping high speed stream is shown in Figure 2-10, In laminar
flow the upstream pressure in the separated region is shown to decrease in magnitude
as the flow travels around the jet,due mostly to the increase in local flow velocity.
This radial plateau pressure, P, decreases to about 50% of the centerline value
at 0 = 90°, and to approximately J0% at 0 = 45°,

2-5
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The effect of jot gas temperature and molecular weight, and clustering on the center-
line pressure distribution were also obtained from the experimental results of
rofcronces 2 and 3 and the foll¢wing expression was derived for these offects

p/P = P/P,y (TP) (MF) (NP) (2-11)

ref corr
and NP are defined below, The data indicate
the pressure only slightly as shown on
gives a multiplying correction factor to
oj/To , expressed as

(-]

where the correction factors TP, MP,
that the jet gas temperature would affect
Figure 2-11. The correlation of the data
the plateau dand peak pressure for air as a function of T

o. 25

Tho efféct of molecular weight was obtained by comparing the experimetital results
usding helium and air as the injection gases, The data on Figure 2-12 shows that
the poak pressure is primarily affected when both gases are at the same total pressure

and temperature, The limited amount of experimental data indicate that using helium
gas will fncrease the peak pressure by a factor of 2 while the distance to the peak was
also moved closer to the jet by a factor of two. Until more experimentcl data becomes
availdble the following peak pressure and peak distance correction factor to account
for the gas molecular weight based on the ratios of kinetic energy of the jet gases is

recommended,
MP ”['m"‘ﬁ')&"m ] (2-19)
where
2

A oluster of four supersonic conical nozzles cperating at the same mass flow rate

as of the single supetsonic nozzle was used to obtain the effect of clustering, The
data on Figure 2-13 show that the pressureé distribution of both configurations is
almost identical for the plateau region while the peak pressure is reduced by approxis-
mately a factor of two using a oluster of four nozzles, It should be noted that an
offective jot exit diameter was used for the four nozzle configuration which was based

on the diameter of a single nozzle having the same exit area or

/ 3 0.0
djo’ ndj Xto—-a-ibo
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where n is the number of nozzles and the distance xy was measured from the center
of the cluster. Again, until more experimental data hecomes available, the effect
of clustoring may be takeninto account by correoting the peak pressure by the factor

NP = 1/JT (2-14)

Thus the data of references 2 and 3 show that the separation pressures are reldated
to momentum ratio as the primary parameter and with temperature and gas effects
laéss importatt,

2,2,2 HEAT TRANSFER DISTRIBUTION ~- Typical laminar heat transfer distribu-
tion obtained from the experimental results of references 2 and 3 around a three-
dimensional jet-stream interaction are shovm in Figure 2-14, The reference values
of neat transfer, h of correspond to the heat transfer coefficient without jet-stream
interactions, It di9uld be noted that the peak values around the jet are located at
the same distance from the jet as were the péak pressure data of Figure 2-10, The
effect of jet gas total pressure on heat transfer is presented in Figure 2-15 along
the jet centerline , Again, the locations of peak values for heating can also be
correlated with the peak pressure distance, The data indicate that there is a strong
jet-stream mixing in the separated region induced by the jet. The evidence of this
mixing is further shown in the heat transfer data of Figure 2-16 which presents the
effect of the jet gas stagnation temperature. The effect of molecular weight is in-
dicated by the data of Figure 2~17 which compares the air and helium used as the jet
gas. The heating is shown to increase with decreasing molecalar weight which was
also found to be true with the peak pressure data.

The effect on the staté of the boundury layer is shown along the centerline of the jet
ont Figure 2-18 for laminar, transitional and turbulent flow, The results were
obtained by inoreasing the angle of attack of the flat plate. Similarly to the pressure
data in laminar flow, the jet-stream interaction is shown to affeot a relatively large
portion of the flat plate i laminar flow, while for a turbulent boundary layer, the
offect is limited to a smaller portion of the surface arcund the jet. Also, the transi-
tional boundary layer jet-stream interaction heat trunsfer distributions will have
characteristics of both laminar and turbulent flows. It is noted that peak heating is
most critical for a laminar boundary layer, The phase-change paint qualitative heat
transfer contours of Figure 2-19 indicate clearly the high heating regions for a
laminar and turbulent jet-stream interaction, The paint in these test melts at a
presoribed temperature and the edges of thedark areas in the piotures are lines of
constant heat transfer, The dark areas will experience higher heating than the
remaining surface, This type of date indicate in particular the high heating in the
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strong vortex region in laminar flow which has a horseshoe shdpe and a complicated
flow pattern for a turbulent boundary layer,

An attempt was made to cotrrelate the peak heat transfer to peak pressure for the
laminar jet-stream interdotion. This type of correlation is shown in Figure 2-20
from which a simplé empirical expression was obtained

1.6
b/h .= 0.89 (pp/PreR (2-16)

= : Furthermore, since the heat transfer was found to be very sensitive to the variation
: of the jet gas stagnation temperature, the correlation of the data presented in
Figure 220a gives a correction factor to the heat transfer, refereticed to the value

at '1‘01/'1‘o R = 0,4 as

1.5
The [(Toj/ To M] (2-16)

The effect of clustering and molecular weight on peak heating can be obtained simply
by making first a correction to the peak pressure and then use the equation from
Figure 2-20 to obtain the heat transfor value.
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2.3 RCS PLUME MODEL

2.3,1 ELOW FIELD NEAR RCS

The jet interaction results described in the previous section were (as in all jet inter-
action models) given for a surface that is exposed to the external flaw and the jet
alone induces the separation. The question is whether such a model works for aft
mounted RCS packages on the shuttle, Figure 2-21 presents a hypersonic approxi-
mation of the wake region at the RCS package., The separation line in this case is
the projection of the wing leading edge rising with angle of attack and shielding the
wing upper surface and OMS pod. Based on such a wake it is evident that jet inter-
action as such would be a low angle of attack phenomenon (¥ < 15°) and that at high
angles of attack all the jets will be exhausting into & wake region allowing the plume
to penetrate the flow at some distance from the nozzle, The hypersonic :
approximation would assume that the wake region is a region of dead or still air with
a separation pressure which can be approximated by a base pressure coefficient
-2
1 —3

‘p Y M2 (2-117)
This is a cohvenient assumption to malie and is used to analyze the plume and
impingement characteristics.

In reality the flow field over the leeward surface of the fuselage of delta wing con-
figuration will be very complex at the angles of attack experienced during entry.
Vortices will be formed due to wing and body flow separation with reattachment on
the side and on the upper surface of the fuselage as shown in the sketch of Figure 2-22,
In particuldar, the vortex which reattaches in the region of the pod location is caused
by the lower pressure region experienced over the delta wing upper surface at angles
of attack, from which the boundary layer separates and leaves the surface as @ vortex
sheet of finite thickness which rolls up into 2 vortex. If the vortex is close enough
to a surface, the down flow will cause reattachment and resulting high heating rates.
The severity of this phenomenon is influenced by the Reynolds number, Mach mumber,
angle of attack and body geometry. A quantitative dermination of this heating with
existing analytical techniques will be very difficult without the experimental data
since it s influenced by numerous interrelated parameters.

2-9

=T - . - g PR SO e




IR | PPN

(1

)

CASD~NAS~73-020

2,3,2 PLUME SHAPE - If the plumtie is exhausting into & wako region whére the pressures
are approaching a vacuum, then it i8 possible to use an approximate method for the flow
field properties by a rocket exhiausting into a vécuum as & model, Reference 6

presénts a model which assumes that the nozzle flow of an ideal gas oxpands isentrop-
fodlly from a nearly pardllel nozzle of exit radius, vy, and Mach number, L The

flow in the far field approximation approaches radial flow from a point source where

most of the mass and momentum were contained in the central core of the jet with

density decreasing both dlong and normal to the jet centerline, The density distri-

bution or a spherical cap at a distanceX from the nozzle exit is given by

-2
L. = E /i X\ (cos e)E"l (2-18)
b2\ Vmax/ \§
where 1+ Tlﬁi-z-
E= 2 1+ 1
Ty 1)M§j < 1+ _L_2>
Y Mj

Yoafre Y
v (v M2
max

6 = azimuth angle from jet centerline.
A similar solution of reference 7 gives the density on the centerline as:

-2
L= B(-i‘_(.t-) (2“'19)
Po
A p 2
e 5 2 (31 (2o)m,
and D(y) = 0.24 for y = 1.4

= 0,123 for y = 1,22
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The far-flald approximation appedrs valid aince tha RCS nozzles are small relative
to the vehicle, Forexample the wing 18 appproximately 80 nozzle diameters from the
pitoh nozled.,

The Lookheed 6 point solutioti of referérce 8 developed from the method of character-
istics solutions offers 4 method for computitig plume contours far from the nozzle and
wes used i1 predicting the plumeé impingement ared in this study:

X, )= 106 fl-.563 (2-20)
"

® max/rj) = 0,65 fz

A Ps e YMZ)I/ 41 - ain eN)'1
At PO’ L

1/4 1 -
£, = (xmx/r,)((-‘}_-lt-) (a+ yMi) /8(1 - 8in 0,)) 1

o. 91

£

max r’)

sl Xy (L=
atX 2 m’(r,) .688 (r

0,992
stX=3-X max;(‘%‘) = 0,871 (*max/Ty

K= S (5 =
atXe S Xmax;( "3) 0,989 (rmqy/Ty)

The pliume diameter at the wing was computed using the 5 point methiod and then an
assumption similarto the vacuum solutions of isentropic flow from the nozzle was used
to determine the plume Mach and pressure at that point,

2.3.3 gQJME IMPINGEMENT, - The reaotion control systéems jets exhausting downward
will impinge on the wing and body flap, 1t 15 also possible that the upward firing jets
may impinge at an oblique utigle on the fin, -

The dowaward firing jets at high Mach number (and high altitude) will be exhausting

into the separated wake area behind tho wing (Figure 2-21) which will be high angle of

attack (¥ = 30°) and so it is reasonable that the vacuum impingement schematic (Figure 2-23)
may bo tepresentative of the flow field at plume impingement, A detached shook wave

alose to the surface would be formed by the high Mach tumber flow impinging on the

plate, The expansion of the jet is unaffocted by the shock wave or the surface that

cawsed it beocause it s at high supersonic Mach number, A region of subsonic flow

2-11
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exists between the strong shock and the surface ds the flow turns and moves out
radially from the stagnation point and eventually passes through a sonio line and
becomes supersonic agait, Referenca 7 derived an approximate formuld for the
shock stand off distance A from a mass flow balance and arrived at the following

relationship

L =
% ~ (2-21)
X
whoerée K = L2
P11
and from normal shock reactios:
p (y+1) M 2
2 = (2"22’

Py (y-i)Ml-bZ

hs  stapdoff _distance (ywas used as a correlation parameter in Seetioti 4 using the
5 point method described above to define Mach ahiead of the jet, = The solution for

" stand off distance needs to be iterated starting with the distance to the plate, Itwas

agsumed that the surface pressure could be predicted by & Newtonian approximation

2 2 '
1=‘w = 1,86 .-Yé- P1 M1 cos“ 6 + P1 (2-23))

because of the high Mach mimber of the plume and the large turning angle. It was
further assumed in the plume {mpingetent calculations performed that tze stagnation
pressure (9 = 0) could be applied across the whole region of plume impact because
the rapid boundary layer build up on the plate will keep the pressure from decaying

a8 (0082 @),
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2.4 SIMULATION PARAMETERS i

3 2,4,1 JET FLOW PARAMETERS = Thayor (reference 9) showed from a dimension-
=t ! al analysis that any appropriately non-dimensiondlized flow field property (FP) for
‘ plume flow interaction depends on the following set of dimensionless groups

P, RT D P, T
PP = o Jo L. L 2-24
P f'(R%" My 2y Mj’yj'Pz’Rz'rz’L’ ' P "T‘L) @-24)

® o
: where ' 3
e, = Reynolds number i
M, = local Mach number
& 4 = local ratio of specific heats
=1 ' M, = JetMach
‘ | 75 a Jeot specific heat ratio
oL P, = Jetsupply pressure

P = local ambient pressure
* R = exhaust gus constant
T = exhaust gas stagnation temperature
| | : R = external flow gas constant
T = local amblent temperature
D, = J'et exit diameter

L' = reference length
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In & Sub-soale test program, several parameters can be matched by using a scaled
model tested at the correct free stroam Mach number. Exocluding conditions where
real gas offects becorie important, matching the free stream Mach for a correctly

scaled model results in correot values of local conditions of

Scaled geometry of the jet exit will also insure matching

D j/I..'
leaving Reynolds number and jet properties still to be handled. Since ambient

pressure and temperature in a wind tunnel seldom match free stream properties
a parametric variation of

T
P
ReL’ —21 ’ and __J_R _oj_ —
P, R

can be msde to detetmine the influence of the mismatch of the values on the flow
field propertys The need for simulating the energy ratio, 'Rj';'oj/R z'r P depends

upon the mdgnitude of this ratio, Thayer has shown that little effect was observed
when this value was below a ratio of 9, Thus, if the full soale ratio is 8 or below,
any cold gas simulation should be adequate based upon his criteria, The jet
interaction data of equations 2-12 and 2-13, however, did show that gas temperature
and molacular weight do exert a sécondary effect on plateau pressure. Values

of the jet Mach number and specific heat ratio must be handled differently, Since
sub seale nozzles typically would not represent & realistic simulation of the full
sctile RCS unit, it bécomes difficult if not impossible to match jet properties.
However, as Pindzola showed in reférence 10, it is the ratio of jet-to-local gas
properties drd not the absolute values of gas propérties which are significant, It
then becomes a problem of establishitg which simulation parameter is significant
{n that the cost of simulation grows enormously as more parametérs are simulated,

The simulation parameters established by Pindzols are summarized in Table 2-1
along with the addition of Herron's parameter iot oqrrelatlng plume size,

The first two parameters in Table 2-1, the boundary in & quiescent and a moving
stream, reprosent matching the plume injtial turning angle, pv, @s it leaves the
nozzle, This would be important primarily in conjunction with Herron's parameter,
reference 11, which is a correlating parameter for pl ume size and is directly
dependent upon PO’/Pm in defining the Mach number of & fully expanded plume
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Table 2=1, Summary of Soaling Parameters
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(M), It would represent plume tmpingement in a quiescent medium where
qu&on 920 of 2-24 show Py/P,, to be an important parameter, The total

pressure ratio parameter Poj ,can be very diffioult to mateh for a soaled nozele
if flight conditions represent very high attitudes where the quiescent medium condition
(c.8. space vaouum) is approachied because wind tunnel ambient pressures are much
highier than frée stream requiring very high chamber pressures or an out uf scale

" nosale,

Jet interaction in the classic sense 18 best simulated by momentum ratio matoching

as oan be seen from equations 2-3 through 2-8, This parameter establishes the

Mach disc ot jet penetration hieight which in turn defines the separated and re-attach-
ing zone pressutre and hedt transfer behavior. If exit pressure ratio is matached along
with mometitun ratio on a model tested at the correct free stream Msdch number, then
thrust ratio is also matched, At higher exhaust Mach numbers, 8 ~Mj and the
boundary criteria (initial turning angle) will be closely simuldted allowing matching

of thtee Pindzola parameters simultaneously for a soaled nozzle.

Pindzold's parameters allow for scaling nozzles wiere the test Mach number does

not equal that of the free stream, Such a test would violate Thayer's oriteria
(equation 2-24) because the local Mach number (M 0 wold be incorract. The
resultant error may not be large if the intéraction is not depetident upon Mach number,
a phenomena observed for otlier aérodynamic behavior in the hypersonic Mach region.

2,4.2 REACTION CONTROL SYsTEM ENGINE PERFORMANCE - The reaction
cot. .ol System engine which was seluoted to use in this study by NASA-JSC is a
bydrazine (NgH,) monopropéllant thruster using catalyst beds for propellant de-
composition, ifydrazine decomposés into ammonia, hydrogen and nitrogen as a
tmonopropéllant, The reaction takes place in two separate steps. The first step
is the reaction of hydrasiie into ammotiia and nitrogen,

3N, H e 4NH, + Nz

2-16
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Tho second step is in the decomposition of ammonia into nitrogen and hydrogen

2NHg~ N2 + 3H2
The first reaction is exothermic and the second is endothermic, The combustion
temperature of the gas is therefore a function of the amount of the ammonia de-
composed, X, which will affect the performance of the engine, Figure 2-24
summarized the performance of the RCS thrusters. The gas chamber temperature,
molecular weight and composition were obtained from reference 12. Usinga
combustion temperature of 2000° F, the following gas composition and moleculdr
weight is obtained with about 40% ammonia dissociation.

N2 = 28%

Hz = 36%

NH3 = 36%

M = 14,7 ibm/mole

Using an exit to throat area ratio, A /At of 20, a jet gas exit temperature of about
room temperature will be experiencéd and a jet exit ratio of specific heat Yj = 1,22
was obtained for the mixture of gases.

2.4.3 TRAJECTORY AND NOZZLE FLOW PARAMETERS -

The reference entry trajectory used to establish the flight ehvironmental conditions

was the Rockwell nominal guided entry trajectory (trajectory number 2007) provided

by NASA-JSC and is shown in Figure 2-26, The Reynolds number for this trajectory

is shown in Figure 2-26 based on the vehicle length of 112 feet while, the ambient
pressure history is shown on Figure 2-27, Figures 2-28 to 2-34 present various full
scale nozzle flow simulation parameters based on the trajectory of Figure 2-26 and

the nozzle data from Seation 2.4, 2,. The detline in the momentum ratio curve above
Mach 8 in Figure 2-2¢ occurs only over a limited Mach range and at higher Mach num«~
bers the momentum ratio rises to a value near 1000, Based on the dssumption that jet
interaction parameters woald hold for this problem also; the most important parameters
to match are momentum ratio and thrust ratio, However, thrust ratio is matched

and plume turning angle is approximated for a soaled nozzle when jet exit pressure
ratio and momentumn ratio ate matched simultaneously at a matohed free stream Mach
number tost condition, These two parameters (exit pressure ratio and momentum ratio)
were then chosen to be matched at flight and test Mach numbers of 7.4, 4.0, 2,95,

and 2.6 using the computer program of reference 6 to size the scale nozzle, When

free stream Mach and tunnel Mach are the same the jet exit Mach My scales directly

2-17
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by the ratio of the ¥ of the rocket exhaust to the test gas to be used,

Reynclds numbér was to be tre
temperuture ratio (R,T /R T

ated as a test variable and the full scale nozzle total
) was approximately 8 which places the simulation

on the region of ‘I‘ha.)’eros1 cuffvS where kinetic energy ratio is not an important

parameter .
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Figute 2-4, Correlation of Supersonic Jet Penctration Height
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Figure 2-7,Correlation of Supersonic Jet Turbulent Upstréam Separation Distance
in a High Speed Stream Over a Flat Plate at Angles of Attack

2-26




e an g ~. vwwma aem -

-

s EOl it

Hey/FT  Poj psia
o a.7x10° 40
A 8.7%100 118
g 3.7%108 933
g 0.7x108 231
v 0.7x108 118
O 0.7% 102 46
4 0.7x10 233
& 0.7x10 285

o
Ll

0°
0°
0°
0°
0°
0°
10°
29

CASD~NA8~73-020

Erﬁt

8.

8.

8.

8.

8.

8.
5.76
2.7

[T D T W W

1000 o o oe o e e o e —
[ M= 2.54 dym0.5IN. Toy/Ty 0.4
=
i 0.165
Pp/Pret Po/Prot 4.82 (3y/0 ) " —-
100 jo
1. 1 oot o1 Loarnl A L
1. 10.
8/ et

100.

Figure 2-8, Correlation of Supersonlc Jet Lamlnar Peak Upstream Pressure

in a High Speed Stream Over a Flat Plate

¢

2-26




Nmmtic g . ot

OdodbD O

CASD~NAS-73-020

Rem/F'I‘ POj
3.7 %100 40
3.7%x100 118
3.7x106 233
0.7%108 231
0.7%108 118
0.7 %106 45

B WY I (U S

ans
Mj-2.54
dj-OoslNC
TOJ/TO(D-O‘4
an(°
10, e v o - -
- x./d; = 0.795 (8,/8_)0" 4%
- Py ) rgf
xp/dj N
1 4. 1 [
‘1‘ " 10»

Qi/ ® vof

Figure 2-9, Correlation of Supersonic Jet Laminar Peak Upstream Pressure

Distance in a High Speed Stream Over & Flat Plate

v

2-27

BN o Y v

100.

B —

EIN S f cmtiteg

O — - .

[




TR STy T e— ey o o Ty

CASD~NAS-173-030

2-28

L g

W
fo—sf | fo— (08T  NOILO@WIQ
+.

- L
N . MOTL
‘ L g
Iy

P

<F S

@06

SELO

jpocid ‘a0 ¥5zein

3 epd vz = 5 yoo= © Orf0g

. LifgotxL°t=%ow 8="N
06




CASD-NAS-73-020

Mg = 8, Rog = 3.7 x10%/¥FT

To o ™ 1360°R

10.0 t
o O Toj.536°R
B é
I O Toy= 18R
1 ¥ Ty = 1022°R

TP 0.25

TP = [T /T /0.4] 5

1.0 -

0.1L. A ) i NN T B |

0.1 1.0

Toj/T o
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Figure 2-12, Effect of Molacular Weight on Laminar Jet-Stream Interaction
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Figure 2-21, Hypersonic Wake at RCS Pod
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Figure 2-22, Lee-Surface Hyperaonic Flow Field on Delta=Wing Orbiter

2-41

L

PPN S




CASD-NAS-73-020

HOCK WAVE
SONIC
\LlNE |
' //Pl(n/‘//
4 \
_—/\/J__J, B p 0\
///////////////77777""'

Schematic Drawing of & Jet Expanding into & Vacuum and
interaoting with a Plane Surface.

|
H P (x,8)
UBSONIC REGION

Figure 2-28.

2-42

e e




(NNDOVA) 391 00TT = ISNHHL

{
S 4
< |
& *yz-z a3y : .y
M SOUBWLIOIOd Juduy WIBAS [0IJU0D UOROELITH i
2
] * H
m O e e e w_a_ o 3
S o 05 » 0 NOUVIDOSSIO VINOWISY INIDTS L
N ; I ol :
) - N e |
L ‘.
e 58 N 5
\N ) MM / ™ m |
g} N » Z = . .
- . N N 2l § /
\ N L3 g |
s —fom m s M.a
; NIk |
IOVITTINI i .
DNLINNOCK / L
NS6=fp usdisT=’d 1m0 N |

0z=sv/fv  2.0002="L 5N / L. *
S ‘ J / A\ j

—i|| >_ _

: ! e 1§
*NI €6 - 2 | -+Jwi




|

PRy

o

]

e

i

e

w - 0%

z

8 |
S .

" ¥1

(od; n? A

2-44

vww b

]
¥ t ¥
gz Lse

e e k. i o e e = et W b il - e - — \i




[]
"
=
< ; 4 — m_ T TT
S T 3 T T 1 bl
i
o : -
: (| 3
- B T ok
2 Emaices Bz
: . . e
z . 1 sl
. dat = : L |
m -1 : e , g LB .
< 1 y _ 3]
T } T ] (]
o 5 PREN! ) -
A - - —+ : : - m
.w ,N m.
1 TR B
18 M .
RS PR :
A,fw T - 1 m H
i A © o
1T . RS R - = =
R ¢ a8 A ” 1 2 W. ;
— ot 54 8 i
S21 M AR .W o )
H., (-] N H 4
T = ~ N
oo m e
et m
31 Z
N
{ P -« “
r : : k- |
i
-~ et W. i
- . a5 M '
[ T 3
i 4 : N < i
2 SR N K
2 SRR T 1 «
. &
— o |
T o =
omtl -~ o & - - o mil i




CASD-NAS-73-020

¢

",
(psi)
S

i :

f 2
S

i ‘i

BT r - e

N

¢ 2 o 6 8 10 12 14

!

Mach Number - M

Figure 2-27, AMBIENT PRESSURE ALONG ENTRY TRAJECTORY

ol

2-46

e g e S . - - : e =




- P s e Rt Sl

100

CASD-NAS-73-020

90

80

70

/2

o0

50

30
20
lo
7
’ 0 2 4 6 8 10 12 14

Mach dumber - M
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3,0 EXPERIMENTAL PROCRAM
3,1 TEST PROGRAM

The NASA-ARC 3-1/2 ft Hypersonic Wind Tunnel (reference 13) was utilized for
hypersonic oil flow, heat transfer and limited force tests, This facility isa blow=
down tunnel with a steady=state testing time of about 1 to 2 minutes, The pump time
between runs i8 from 1 to 1=1/2 hours and the air is pumped from vacuum spheres to
high pressure bottles, During the pump time, a pebble bed heater 18 heated to the
desired tunnel stagnation conditions using gas heaters. The tunnel is run by passing
the high pressure air through the pebble bed heater through an axisymmetric nozzle
into the test chamber which is connected to the vacuum spheres. The nozzle and test
sectioh are cooled by helium which is introduced through an annular slot in the nozzle
at the subsonic entrance, The tunnel has a nominal Mach range of 6 to 10 with 3
fixed Mach number nozzles, with a usable test core of about 25 inches; however, the
Mach number 7.4 was the only nozzle used during this test program, All tests were
made at a nominal Reynolds number of 4 x 108/foot.

The model support system is housed in the test chamber on the right side of the
nozzle. This system is hydraulically actuated into and out of the flow and servo-
controlled over an angle-of-attack range of £18°, A sting off-set adapter was used
to achieve an angle -of-attack range of +2 to +38° degrees for this test, Twoyaw
adapters(+5°) were also used during these tests. The model is injected from the
side into the nozzle flow after tunnel start and the model is retracted in 4 similar
matner. Injection or retraction tratisient to or from the tunnel centerline is about
0.5 seconds, Operation of the wind tunnel 18 automatic with tunnel total pressure
programmed into a controller prior to a rum. Angles of attack were manually set
during a run, yaw anglés were set bet ween runs, -

Force and pressure data were récorded on magnetic tape and were reduced off line.
Heat transfer data was recorded by a 170 frame/second movie camera mountad in the
test chamber using temperaiure sensitive paint as the test medium, Oilflow data was
obtained using a titanum/oxide vacuum oil mixture on the model and taking still
photographs after the run was completed, .

Test section 2 of the Langloy Research Center's 4 x 4 ft Unitary Plan Wind Tunnel

was used for supersonic force and flow visualization tests, The test section 2
(reference 14) has & nominal operating range from Mach 2.8 through 4.7 and test
section dimensions of 48 inches by 52 inches by 84 inches, The Unitary Plan Wind
Tunnel (UPWT) ie & continuous flow facility in which the Mach fumber is controlled by
an asymmetric sliding nozzle block and in which tunnel stagnation pressure

and temperature cah be controlled independently of Mach and of each other, The tunnel
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conditions used for this test program inoluded:

Mach Reynolds Number P, Tuntel T, Tunnol
2,6 3 x 109/1t 17,68  PSIA 160° F
2,06 3 x 108/1¢ 22,47 PSIA 160° ¥
4,0 1 x 108/8t . 13.67 PSIA 176°F
4,0 3 x 106/6t 41,02 PSIA 165°F
4,0 6 x 106/1t 68,38 PSIA 1M°F

The model was motunted on the adjustable angle coupling on the sting and the dangle

of attack was set by adjusting the coupling. The angle of attack range of the coupling
was from=2 to +40° The test was limited to 36 degrees for the Mach 4

cade with the exception of the high Reyrolds number (6 x 103/£t) case where sting
coupling load limits caused the angle of attaok to be restricted to 25 degrees. Yaw
angles were Setto a maximum of +6° using the existing support sting mechanism.
The model force datd was obtained from & NASA provided {nternal strain gage balance
(Langley Balance Number 838) and & limited sei of oil flow runis were mdde using &
fluorescent oil tachuique,.

3.1.1 MODEL AND {INSTRUMENTATION DESCHIPTION - The wind tuninel model

used in this test progrant was-a 0.015 scale model of the PRR orbiter configuration

as defined by Rl drawings (reference 15) and shown in Figure 3-1 installed in the
Langley UPWT, The model consists of the following parts which were cast or machitied
from 17PH stainless steel.

d¢. removable nose

b, upper fuselage afterbody

o. lower fuselage afterbody for wing-off

d. lower-aft fuselage cover (heat shield/cover)
e. fuselage afterbody fairings

f, OMS pods

g. vertical tail

h, tafl-off block

i, Wing . '

j. manipulator fairing

k., wing tip dummy RCS pod ,

1. balance adapter for the 6-component balance
m, non-metric RCS plenum and supply line

n, seven (7) nozzle configurations

o, RTV OMS pod

Two left hand OMS pods were made; one from stainless steel for the force tests
and the other with an RTV rubber covering for heat transfer tests, The RTV ribber
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OMS pod has a white grid on the surface to agsist in the heat transfer data reduction,
In addition one left nozzle block in & yaw nozzle configuration was also fabricated with
an RTV covering for the heat transfer tests, Figure 3-2 presents two views of the
complete model showing the RTV rubber OMS pod and nozzle installed on the left side
of the model and set of pitoh/roll nozzles installed on the right side. Reference 1 pro-
sents a complete set of model drawings,

The complete model except for the reaction control system plenum and nozzles was
mounted on an internal force balance which was attached to a sting as shown in the
gkotoh of Figure 3-1, Thus the force and moment ddta obtained during the test did
not include the thrust and thrust momerits but only the basic configuration and the
induced loads from jet interaction, Figure 3-3 shows the location of the jet nozzles
relative to the moment reference center of the model, .

Section 2 presented the reaction control system engine charaoteristics and the flight
parameters which were to be matched in the wind tunriel tests, Four test Mach
numbers were selected at which the flight conditions wotild be used to design nozzles
matching full scale pressure ratio, either momentum ratio or mass flow rate and

air or helium as test gases using the computer program of reference 16 to size the
nozzles. The three conditions included air as test gas matching momentum ratio and
pressuré ratio which resulted in & scaled nozzle with an expansion ratioof 7,37, air
as the test gas matching mass flow ratio and pressure ratio which resulted in a
scaled nozzle with an expansion ratio of 2,68; and helium as test gas mdtching momen~
tum ratio and pressure ratio which resulted in a scaled nozzle with an expansion ratio
of 3.62,

The model nozzles were then designed as 16 degree conical nozzles with a circular
throat one diameter in length, Five yaw nozzle blocks were fabricated as shown in
Figure 3-4 and include: . '

a. N, - Twin nozzle yaw configuration having an expansion ratio

7.37 .

b, N? - Twin nozzle yaw configuration having an expansion ratio
of 2,58

c. Ng - Twin nozzle yaw configuration having an expansion ratio
of 3.62

d. N5 - Single nozzle yaw configuration having an equivalent nozzle

area as (a) above with an expansion ratio of 7,37

e, N'l - Twin nozzle yaw configuration in RTV surface having an

expansion ratio of 7,37

These yaw nozzles were scarfed by computing the theoretical nozzle exit diameter
to a flat surface at the outside of the block contour and contouring the block after
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the nozzles were drilled, The twin nozzle configurdtions wére located 8o that the
centerline of the nozzles were 1,5 exit diameters apart, All yaw nozzles were
perpendicular to the longitudinial centerline of the vehicle and parallel to the xy
plane,

Two pitch/roll nozzleé blocks were fabricated as shown in Figure 3-6 having twin
nozzleec with an expéinsion ratio of 7.37. These nozzles are located in the flat upper
or lower portion of their blocks and thus are not scarfed, The nozzles are perpen-
dicular to the velicle centerline and are pardllel to the vehicle plane of symmetry.
Model strength requirements prevented these nozzles from being mounted as close
to the edge of the nozzle block 4s would be desired for scale location resulting in
nozzles located 0, 25 inch inboard of the scale location, Figure 3-3 shows the
rozzle lucation relative to the moment reference cehter.

Vacuum chamber calibrations were performed on each nozzle in order to determine
the actusl performance of the tozzle set so that the test data could be obtained at the
correct thrust levels, Data was obtained at 5 psia and 3 psia backpressure in the
chamber using dry nitrogen as the test gas for all nozzles and, in addition, helium
for nozzle N3, The theoretical nozzle characteristios were used to define the supply
pressures to be used in the tunnel to match pressute ratio and momentum ratio and
these pressures were then corrected to test values using constant thrust and the
calibration curves.

The test gases used at NASA-Ames were dry nitrogen and helium which were supplied
from high pressure bottles manifolded together to provide a steady flow rate without
excossive pressure drop during a data run. The nitrogen bottles were connected to &
tank truck of gas which was the primary supply for these tests. Figure 3-6 presents

4 schematic diagram of the gas control system, The Grove Regulator (R2) was used
to adjust the model plenum pressure by monitoring the output of the plenum {ransducer
(TD3) on a digital volt meter, Gas flow into the plenum was turned on and off using
the solenoid actuated valve.

The gas used at the Langley unitary tunnel was dry dir which was supplied from a
high pressure line immediately adjacent to the tunnel, The gas metering system was
similar to that shown in Figure 3-6 in a more simplfied form, The gas system
operator was located next to the tunnel and directly controlled the Grove regulator
which monitoring plenum pressure on a digital volt meter, Figure 3-6 without the
valves in the test chamber and gages in the control room is a good representation of
the flow control system at Langley.

Force data obtained in two test faoiliﬁes required a different force balance was used
at each facility, ATask Mark XIV 1 inch balarice was used at the Ames hypersonic
tunnel which has an allowsble load range of:

3-4
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a., normal force 800 Ik

b, side force 400 Ib

c. axial force 100 lb

d, pitching moment 1600 in lb
e, yawing moment 660 in lb
f, rolling moment 250 in 1b

The balance used for the tests at the Langley Unitary tunnel was the Langley 839
1.25 inch balance which has an allowable load range of:

a, normal force 800 lb

b. side force 200 1b

c. axidl force 60 lb

d. pitching moment 1600 in, Ib
e. yawing moment in.lb

f. rolling moment 400 in,1b

The primary test objectives were to obtaih force, heat transfer, and oil flow data
from the model with and without RCS simulation in order to determine the interaction
affocts between the RCS plumes and the airflow around the vehicle, However, in

order to determine the nozzle thrust for correlation with the other data one pressure
measurement was required in the model nozzle plenum chamber as shown schematic-
ally in Figure 3-6, In addition one copper-constantan thermocouple was mounted in
the nozzle plenum chamber as is shown schematically in Figure 3-6 to provide a
direct measurement of the temperature of the gas supplied to the nozzles, This

gage proved to be fragile during the test programs, however, and little useful

data was obtained from it,

During the heat transfer tests at NASA-Ames additional Iron-Constantan thermocouples
were used to measure the temperature of the RTV surfaces of the OMS pod and the
RTV yaw nozzle block shown in Figure 3-2,

3.1,2 TEST PROGRAM - The hypersonic test program which was performed at
NASA-ARC (HWT test 156) at a Mach number of 7.4 included 17 oil flow runs,

14 heat transfer runs, and 4 force runs as shown in Tables 3-1, 8~2, and 3-3
respectively, Six force data points were obtained on each of the four force runs;
jet on and jet off at three angles of attack, The data was taken in this manner to
minimizo the effects of temperature on balance output between the jet on and off
data points, The nozzle chamber pressure given in these tables are nominal values
set for a given run,

3-5
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Table 3~4 presents the force and oil flow supersonic test program performed at

the Langley Unitary Plan Wind Tunnel (UPWT test number 1031) at Mach numbers
from 2.6 to 4.0, Eighty two (82) force runs were obtained as were four (4) fluorescent
oil flow runs, The primary runs for Mach number effect were made at a unit
Reynolds number of 3 x 10%/ft while Reynolds veriation from 1 x 108 to 5 x 108/8¢
were obtained at & Mach number of 4,0, The effects of nozzle and vehicle geometry
were tested at a Reynolds number of 1 x 108 because the lower turnel pressure made
it possible to test a larger range of nozzle static pressure ratio with the existing air
supply. No gas is shown on Table 3-4 because all of the tests were made using dry
air as the test gas, In addition to the force data, Schlieren photographs were taken
at angles of attack of 20° for Mach 2,5 and 2,96 and at angles of attack of 26°, 30°,
and 35° at Mach 4 on most data runs,

The test was made with natural trunsition, All data were corrected for balance and

sting deflections due to aerodynamic loads, Flow angularity corrections were made

from existing flow calibrations, No adjustment was made to axial force or drag data
for cavity or base pressure,

The reference dimension values used as the constants in the data reduction -
equations to convert the measured forces and moments into aerodynamic coefficients
are:

a. reference area (Ar ef) = 00,7246 ft2
b. longitudinal reference length (°MA C) = (,6669 ft

o. lateral-directional reference length (bref) = 1,25696 ft
2
d, ocavity area (Aoa vity) = (,03883 ft
e. reference moment center

I, model station 15,961

I, model waterline 6,000
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Figure 3-3 presented & disgram showtng' the location of the nozzles relative to both
the model and bdlance centers., All data waé run &t zero control deflection on the

control surfaces,

The data presented in this réport will be body axis data, This was done to redice
the data manipulations requireéd to obtain the inoremental induced affects from the
balance measuretents,

3.1,3. DATA ACCURACY - Table -4 shows that a number of repeat data rins were
obtained at the Langley UPWT for the basic configuration with no jet simulation,
These repeat runs include the following conditions:

a. 4rm£satM=4.0,Re=1x106/ft
b, 4runsatM=4,0, Re= 3 x 109/t
c. 2runsatM=4,0, Re= 6 x 106/t
d, 4runsatM=2,95, Re=3x1 6 /8t
e. 4runsatM=2.§, Re=8x106/ft
£, 9 yuns at M = 4,0, Re = 1x10 /tt, 8= 2.5
g 2 runs ot M = 4.0, Re = 1 x108/8t, = &

and these 22 runs were used to ovaluate the data soourdcy. A mean vdlue of angle
of attack and of all the aerodynamic coefficients was computed for each angle of
attack within each of the 7 data sets given ina to g dbove, The difference between
the metn values and the indivudual data points were theti computed for the angle of
attack and the six component aero data. The aerodynamic coefficient differences
were then convetted back into force and moment measurements to rémove the
tunnel dynamie pressure effect by multiplying them by the dynamic pressure for
ench run and the referénce area and appropriate reference length, Assuming

that angle of attack, Reynolds pumbet, and Mach number have little effect on
balance reading error, weé now have & data collection of approximately 130 samples
of reading error for each balance forco and moment compotient. Axial foree duta
was not presented because of its low priority in this test program, The root mean
square value of each data set was computed and is shown below compared to the
quoted balance accuracy of 1/2 parcent of full scale and the most provable error 18
showti in the table on the following page. The most probable error is the value for
which the probability of this ertror is 80%.

8-14
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Component 1/2% Full Scale RMS MPE =, 67 (RMS)

a., Normal Force 41b 1,127 b .76 1b

b. Side Force 11b .2068 1b .139 1b
¢, Pitching Moment 8 inlb 2,3inlb 1,66inlb
d. Yawing Moment 2inlb .336inlb .2€6 in ib
e. Rolling Moment 2inlb .566 inlb .382inlb

in order to work in coefficient form it is necessary to divide the most probable ,
error by the test condition dynamic pressure and the model reference conditions. i

Thus in coefficiert form the error is worst for the lowest dynamic pressure case 1
which for this test was Mach 4,0, Rg = 1 x 106/8t and the incremental errors are: .
Compotient Error
ACy .00725 |
ACy .00135
\
8C +025 \
aC, .00171
AC .00288
When thrust is not included in the balance loads, the errors in amplification take the
form
3=1
. 26Cq (3-1)
A = -
TTMTpx a0,
where AKM = arror in force or moment amplification
vl AC, = balance force or moment error

4
i ACT = thrust error due to pressure instrumentation

. CT = thrust force or moment coeffiocient

i

{ Figure 3-7 shows the error for the force and moment amplification factors as a

; function of nozzle supply pressure. These data are plotted against nozzle chamber
l pressure rather than thrust since it is easier to compare with the run schedule in

‘l this mamner. The normal force amplification will have a large scatter at all
3

pressures and would not be expected to be very good, 1In contrast the moment ampli- .
fication factors should have reasonable scatter,

“
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3.2 HEAT TRANSFER DATA SUMMARY

The space shuttle force model which was modified by fitting the silicone rubber OMS
pod and nozzle inserts was tested at 4 nominal Mach number of 7.4 and a nominal
Reynolds number per foot of 3,76 x 108, The angle of attack was varied from 256° to
35° and the yaw angle from 0° to 5. Jet on and jet off conditions were simulated
using both nitrogen and helium as the jot gases. A summary of the run schedule, the
test cotiditions, the model attitude and the jet gas conditions are given in Table 3-5.
The exact tunnel test conditions varied only slightly from the nomitial values shd n
in that table,

3.2,1 HEAT TRANSFER TEST PROCEDURE

Prior to a run, the silicone rubber surface of the model was cleaned with a solvetit and
sprayed with a relatively thin coat of a selected (Tempilag=") temperature sensitive
paint. The paint displays a phase change from an opaque solid to a colorless liquid

at a known temperature, The paints used in this test changed phase from 169°F to
331° F. Uncertainties in the specified phase chiange temperature are estimated by the
mamifacturer to be one percent, The OMS pod and nozzle inserts surface phase
change progression during each run was continvously photographied by & 35 mm camera
moynted in the test chamber, Onliné monitoring of the progression of the phase change
was done through a closed circuit video system., The 35 mm camera was operated at
about 10 frames per second and fluorescent light illuminated the model. The camera
was started a few seconds before the beginning of the injection cycle and remained on
until the model was retracted from the airstream. The model initial temperature

was measured using a thermocouple embedded into the rubber part of the model,

After a run, the model was removed, residual paint washed off with a solvent and re-
painted for another run,

The data reduction of the phase change paint téchnique assumes that the surface
temperature of the rubber model is equivalent to the heating of a semi~-infinite
slab with a backface temperature that remains constant during the test event,
Assuming that the silicone rubber material thermophysical properties are in=
variant with temperature the heat conduction solution is

AT = k| 12;2'1‘_ (3-2)
3t Py O
3-16
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Using the following boundary conditions
T (y,0) = T,
T (o, t) = '1“

a_'ta:s%_t).f;.a_ [ Tow - TO0]

(3-3)

Assuting thit the surface is subject to ah instantaneous and constant heat transfer
coefficient a closed form solution is obtaitied (reference 17).

2
Tw=T _ 1-¢¥ erfow
T =T s (3-4)
aw |
where 0= BHVEE

At melting, the surface temperature 18 assumed to be the same ds the phitse change
temperature ot T, = T . To facilitate data reduction, the tunnel stagnsation tempert-
ture, Ty, was used insfBha of the adishatio wall temperature, Tyy. Thoo the value of
the heat tratisfer voefficient, b, will be independent of the losal flow properties. The
general solution asstimes that there is 1o error introduced from wall curvature, that
the model 18 isothermal before infection, no radiation from the lights and no tempera-
ture distortion from the metallic part of the model, The thermophiysical properties

of the silicone rubber material used fn this test are

f,® 92.2 1bm/tt3
¢ = 0,304 Btu/lbm-* F
K = 6,26 x 10~° Bru/ses-tt=> F

The phase changs paint patterns or isctherms, photo-recorded on 86 mm films at
disorets time intervals were projected on a table for tracing, Selocted isothetms
were traced and the heat transfer coefficients computad by the method presented
above. These cafficients were then ratioed to the theoretical heat transfer coeffi-
clents at the staguation point on & scaled one-foot radiys ephere using the Fay and

Riddell equation in the following form (reference  18).

3-117
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h =008 o (o p )t “9’0'4 |21, (1 /P 0.2
r=1' ~Nr P wh w) 8 8 o 8 (3-8)
Sirice the model scale is 1.6%, r=0,016 ft for this test. The heat transfer coefficients
comnputed for the scaled sphere are 4180 presented in Table - 3-6,

3.,2.2 HEAT TRANSFER DATA ANALYSIS

Typical heat transfer distributions presetited as isotherms over the pod, obtaitied
from the phase change paint test data are showt in Figure s8-8and for comparison
Figure 3-9 shows oil flow pictures of a tiearly similar condition, Indicated for the
jéts off condition dre the high heating regions over the pod from wing {nduced vortex
reattachment. With the yaw RCS thrusters operuting, the flow over the pod becomes
separated over d sizable region shead of the fet. The avertage heating over the
geparated region was reduced cue to the wing vortex lift-off caused by interactiofl.
However, the plotted data show that the pedk heating value produced by the jet will
gtill remain high when compared to the case without intaraction,

Figure 3-10 shows the effect of inoreasing agle of attack in causing the interaction
hesting to become more symmetric around the centerline of nozzles while Figure 3-11

shows the effects at 5 degrees windward yaw.

A summary o the heat transfer test results with and without jet-stream interactions
using nitrogen as & jet gas is shown in Figure 3«12 and 3-1§, The duta are plotted at
«=30° which is the angle of attack used for the major part of the entry trajectoty.

Also shown is the angle of yaw effect, where g yaw angle of p=-5° will essentially
double the heating rate from & nominal §=0° . Figure 3-12 indicates that around the

pod, without jet interaction, the heating level would be about 6 times that of the
laminar fiat plate value at §=0° agsuming a boundary layer length otigimating from

the orbiter nose, The data with jet-stream interaotion shiow peak heating values higher
than without interaction even though,as noted in the {sotherm dats, the wing vortex

is displaved,

Using the correlétion obtained from the experimental data of the RCS jet-interaction
test at AEDC Tunnel B presented in Section 2,22, peak heat transfer value and the
location over the model were computed, Fairly good prediction 1 shown for the petk
location while excellent cor _.ation is obtained for the peak heating value, when local
heating without interaction is assumed to be that of the laminar flat plate value. Itis
noted that the peak heating values were obtairied by extrapolation of the paint data and
that faired curves are similar in shape to those shown in Saction 22 2 both for the
centerline and off centerline distributions.
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3.3 FORCE DATA SUMMARY

Table 3-3 and 3-4 summarized the force data runs which were obtdined at NASA-ARC
and NASA-LRC respectively and this section will briefly show some reoresentative
data which was obtained. Complete force and moment coefficients are shown to
{llustrate the maghitudes of the changes caused by the RCS Jets relative to the total

. vehicle aerodynamic coefficients, Interference data whick is computed as the differ-

ence between jet on and off data are also presented, Reference 1 presents the force
data in greater detail. The analysis of this data will be presented in Section 4.

The balance measurements with the jet on included the basic vehicle aerodynamics
plus the induced load from jet interference.. The definition of amplification factor
is:

ACMm

KM = L S (3-6)
CMT
where KM = force or moment amplification factor

ACy, = inoremental force or moment coefficient
induced on vehicle by jet

CMT = jet force or moment coefficient

The incremental induced effects wis computed from the difference between the
jet-on and off data.

ACM: =Cmy- M (3-7)

where Cu = measured force or moment coefficient with
jet on

CM°= measured force of moment coefficient with jet off
Because the incremental values can be very small and thus sensitive to data scatter,

the mean values of the jet-off coefficient data were used as the best eztimates of

the Langley data at its mean value of anizle of attack and this corrected for the angle
of attack difference from the mean to the jét on case,
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ACys. = Car= |Cm.*+ 9--111- (or -'67) (3-8)
Ml Mj Mo d & j 0

where

CMo = mean value of jet off force or momert coefficient

oo = mean value of jet off angle of attack
% = jet on angle of attack
@

C. -
—z= = 8lo f M at %
det pe o ° °

ac,
The slope F&‘M of coefficient was obtained by curve fitting the mean value data of
all six force and moment coefficients versus mean angle of attack with 3 point curve

fit equation.

1\40 = At A o +A, O (3-9)

and computing the slope at the @ for the mid point
dCMO a +A 10
1&— =2A3 a 2 (3"' )

of the interval. No such corrections were made of the Mach 7.4 data because of *
the limited data.

The thrust force and moment coefficients were computed at each jet on data point
using the thrust equation (3-11).
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= thrust ~ 1b

T
A’I‘ = pgozzle throat area~in

AE = nozzle exit area~ in2

y = exhaust gas ratio of specific heats

Pa & ambient pressure ~ psia

P = nozzle exit pressure ~ psia

Poy = nozsle chamber pressure ~ psia

The nozzle throat area was computed from the nozzle calibration data, the

exit area was computed from calibration date throat ared and design expansion
ratio, the nozzle exit pressure (F) ) was computed from chamber pressure (Pof)
and design expansion angle, P was assuraed to be tunnel ambient pressure and was
recorded for each daty point, atd Poy nozzle chamber pressure which was recorded
for each data point, Tius point to point variation in thrust due to supply pressure
and tunnel operation should be accounted for in the thrust force and moment coeffi-
clents and in amplification factor presented in this section,

3.3.1 BASIC gomGURATION DATA » Figure 3-14 presents the effect of Mach
number on the vehicle aerodynamics without RCS operation as a function of angle of
attack, The normal force data Figure 3-14a and the axial force data Figure 3-14c
show typical decreases in force data with increasing Mach number at constant angle
of attack while the pitching moment }igure 3-14b shows an increasingly nose up
moment illustrating the increasing importance of nose and leading edge bluntness
effacts and decreasing leeward surface negative pressures at higher Mach numbers,
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3.3.2 YAW JET DATA - The yaw thrusters avre fired on one side at a time for

yaw control, As shown in Figure 1-3 the yaw engines fire over the tmiling edge of
the wing in a spanwise direction. The left side yaw engines were the only engines
gimulated in these tests, thus, the engine thrust will cause a positive side force and
a negative yawing moment. Figure 3-15 presents & representutive sample of the
force data obtained with yaw Jet on data obtained a4 Mach 4,0 with a range of supply
pressures from 35 psia to 600 psia. This data shows that the yaw jet induced no
significant change in normal force and axial force. There is, however a definite
increase in nose up pitching moment with increasing chamber pressure. The lateral
direotional data Figure 3-15d shows that the left yaw jet acts principally to induce

a left wing down roll particularly at angles of attack above 20°, There appears to be
no yawing moment induced and a slight increase in side force noticed at the highest
chanb er pressure,

Figures 3-16 and 3-17 present the incremental force and moment data as well as the
side force and yawing moment amplification factors at the scaled flight conditions

. where freestream nozzle momentum ratio and exit pressure ratio were matched.

The incremental yawing moment data of Figure 3-17 shows very little scatter around
zero and the amplification factor lies between .9 and 1.0 indicating very little adverse
interference. The incremental side force data of Figure 3-16 in contrast shows more
scatter as predicted in the error analysis, with Mach 4.0 data consistently highet.
This is interpreted as the result of the reading errots since the nozzle pressure at
Mach 4.0 was only 100 psia for matching and a probable error K., of .4 was
ostimated (Figure 3-7). Figure 3-18 shows the close agreement getween the

Msch 4.0 and Mach 7,4 data when compared on a pressure ratio match only, Figure
319 shows that there may be a slight pressure ratio effect on yaw amplification

but no discernable Reynolds number effect over the range from 1 x 108/t to

6 x 109/t at Mach 4,0, The effect of yaw angle from +6° to 15° i{s shown on

Figure 2-20 where positive yaw shows a slight gain in yaWw amplification, Figure
4-21 shows that jet supply pressure effects are negligible on yaw amplification,
Figure 3-22 shows moieé clearly the pitch up and roll induced on the vehicle,

Figure 3-23 shows that the yaw jet plumes are apparently bent over to impinge on

the wing.

3.3.3 ROLL JET DATA - Roll control simulaticus were performed for positive
roll (right wihg down) with the nozzles on the left side exhausting down toward the
wing while the right side nozzles exhausted up past the vertical fin, In this way a
roll couple was to be generated without any other forces ox moments, Figure 3-24
presents a sample of the data obtained with roll jets off and a comparison of the -
effects of nozzle chamber pressure on vehicle aerodynamic characteristics at
Mach 4.0. The normal force shows & slight reduction as the chamber pressure
increased while the pitching moment shows a large nose up pitching moment 18
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generated sufficient in size to countersgct the basic configurdation moment and trim i
the vehicle at 15° angle of attack for the highest chamber pressure tested, The axial 5
force which includes base pressure decredses with increasing nozzle chamber pressure 1
to about 50% at the highest pressure tested. The lateral-directional data does appear
to show a strong angle of attack influence on the changes induced by chamber pressure
with the induced effects being strongest at the lowest angle of attack, Positive roll

jets operatich induces a negative rolling moment on the vehicle which opposes the
control, a nose right yawing morent, and a side force to the left,

The incremental rolling moment Gata at scaled flight conditions (Figure 3-25) shows
that the right wing down roll jets induce a left wing down rolling moment on the
vehicle. The net result is 4 decreasing amplification factor with increasing angle
of attack with complete cancellation (K j=0) at about 20 degrees angle of attack and
roll reversal at angles above this, Figure 3-26 shows good agreement between
Mach 4 and Mach 7.4 amplification factor data at the same nominal pressure ratio
indicating small Mach number affects except at the highest angle of attack, Figure
3-27 shows a stromng effect of supply pressure (and thus momentum ratio) at lower
angles of attack with an abrugt reduction the incremental rolling moment at angles
above 25° .

The effect of operating the two sides of the roll control separately is shown i

Figures 3-28 and 3-29, The plume interference with vertical fin flow is strongly

dependent on angle of attack (Figure 3-29) decreasing gs the body shields the fin

from the flow. In contrast the data of Figure 3-28 shows that the ird uced roll from

the plume interaction with the wing flow is essentially independent of angle of attack

and is of sufficient magnitude to completely cancel or reverse the control input.

Figure 3-30 shows ofl flow visualizations of the interaction of the plumes with the

wing and vertical fin, Note the difference in flow in the wing in views a and b in -
particular,

The induced effects shown in Figure 3-24 are shown in incremental form in Figure
3-31. The roll jets induce a small reduction in normal force, 4 sizeable nose up
pitching moment, and a large reduction in axial force which must all be due to the
plume/wing fiow interaction. At the same time the plume/fin interaction produces
a large favorable yaw at moderate argles of attack. The induced side force, and
yawing moment appear to be sensitive to angle of attack while, axial force and
pitching moment are most sensitive to nozzle pressure and largely independent of
angle of attack,

In summary, the test results show that the roll control thrusters induced large count-
eracting loads on the vehicle at all Mach numbers which result in very low control
effectiveness nad even reversal, The problem was shown to be largely due to the
plume interaction with the wing flow.
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3.2.4 NOSE DOWN PITCH DATA - The pitch jet effect data were obtained using the
pitch jet on one side only on the assumption that the cross feed effect are small,
More rvecent Rockwell data has indicated that the effects are small but significant in
terms of reducing amplification on the nose~down pitch jets as the plumes impinge
an the body flap and feed across the base of the vehicle. The single side data does
{ndicate the trends and cross feed is a secondary effect.

Figures 3-32 to 3-35 present a summary of the nose down pitch data obtained in

these tests with Figure 3-33 showing that a pitch reversal was experienced at all
Mach numbers tested in this program at scaled flight conditions. Figure 3-34

<howvs a large variation in the incremental pitching moment as a fuaction of supply
pressure but a zero amplification at all pressures, This curve clearly indicates

that momentum ratio is the primary parameter controlling pitch control interaction,
Assuming symmetric firing of pitch nozzles, the only other induced force should be
an xial force which is shown in Figure 3-85. This figure shows the same sensitivity
« =xial force to suppiy pressure seen in Figure 3-31 indicating again it is the plume
down onto wing and body flap which is the primary problem of the roll control,

3.3.5 NOSE UP PITCH DATA - Figuras 3-36 and 3-37 present data for the nose up
pitch jets firing past the fin, again tested with one side firing only. The data show
some scatter at hig*er angles of aitack on Figure 3-37 but increasing supply pressure
prings the data closer to an amplification of i, The accuracy of the data improves

at higher supply pressure aud the interpretation of the data is that no appreciable
pitch interference is experienced for these jets.
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Figure 3-9,01l Flow Visualization; Effect of Yaw Jet Operation; @=25°, Poj =512
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Figure 3-20, Effect of Yaw Angle on Yaw Amplificatior at Mach 4.0, Re = 1x10 /ft
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4,0 DATA ANALYSIS

In order to predict the effects of the reaction control system jets on the full scale
vehicle, it is necessary to determine from the data, if possible, the major parameters
which effect the plume/flow field {nteractions, Fortunately, the yaw amplification

and the nose up pitch amplification apper very close to 1 8o that no analysis of this
data was required. The side force amplification and normal force amplification are

of lesser importance and no analysis of this data was attempted because of the scatter
and because the analysis of the moment data should be applicable to the force data.
There then remain five interaction effects which must be analyzed if possible:

a)  rolling moment due to yaw control

b)  pitching moment due to yaw control

c) rolling moment due to downward firing engines
d) pitching moment duse to downward firing engines
e) rolling moment due to upward firing engine

) yawing moment due to upward firing engine

Not all of these interaction effects are of equal importance, the problems of nose
downward pitch amplification and roll amplification are the most important by far.
However, a limited amount of data analysis has been done on all of these interaction
effects.

4.1 EFFECTS OF JET EXHAUSTING TOWARD WING

Section 2.1 presented a number of possible correlating parameters and Figures 4-1

to 4-11 present the incremental pitch and rolling moment coefficient data obtained
from LRC runs 41 through 53 as well as the Mach 7.4 data from Ames run 38 correlated
against a number of these parameters, These runs were used because the only jets
being used are the pitch/roll jets exhausting toward the wing and body flap. Figure
4-1 shows a strong correlation at all Mach numbers (2.5-7.4) and Reynolds numbers .
ax 106/& and 3 x 106/ft) for the incremental rolling moment with momentum ratio,
The pitching moment data also shows strong nearly linear correlation except for the
Mach 7.4 data. These same general results are shown in Figure 4-2 for thrust ratio,
Figure 4-8 for exit pressure ratio, and Figure 4-9 for the ratio Poj/q,,. This was ex-
pected since all data at all Mach numbers was obtained from one nozzle and with one
nozzle these parametors are constant factors times momentum ratio, In Figure 4-3
correlation of the data versus mass flow ratio show a very interesting trend, The
incremental pitching moment at Mach 7.4 shows good correlation with the other

Mach number data while incremental rolling moment is slightly poorer. The good
correlation of the Mach 7.4 pitching moment data could be taken to mean that mass

4-1
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flow ratio is the most important parameter not momentum ratio, but for a fixed nozzle l‘:
based on nozzle exit area the mass flow ratlo is equal to the square root of momentum f

| 1/2 E'
| - _{(q» L) AP, (RG'T’)} “:
, ; R T |
; 60 22 & -
)| . l

mt f ratio times temperature ratio and this is interpreted as a possible temperature ratio

‘ effect in addition to the momentum ratio effect, Figure (4-4) shows the tunnel data

T A was obtained at 4 kinetic energy ratios which consists of the product of temperature
ratio and Mach number ratio, THis figure shows that temperature effects must be a
secondary effect compared to momentum ratio. Figure 4-6 shows a good correlation
of the data at Mach 4 with the Mach disk height jet interaction parameter, given by
21 which also relates to momentum ratio at fixed Mach number. The lower Mach
number data being off of the Mach 4 line leads to the interpretation that momentum

; ratio is the better parameter. Strike (reference 19) correlated jet interaction data !

I to a parameter & based on an application of the blast wave analogy to the jet inter-

-1 action phenomenon and has the following form

~3/4
0= (o) ) SN -

¥ where !
K ‘ ¢ = wing chord length .
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In this correlation parameter, all the jet properties are referenced to the conditions
existing at the nozzle throat instead of the conditions existing at the nozzle exit. The
data of Figure 4-6 shows good correlation at Mach 4,( but the parameter does not
work for the other Mach numbers., A correlation against plume initial turning angle
is shown in Figure 4-7 where again some correlation is seen within the Mach 4 set
but not at the other Mach numbers, The Mach 7.4 data on Figure 4-8 argue against
exit pressure being a prime correlating parameter except as it occurs in the momen-
tum ratio, Section 2.3 suggested that if a near vacuum plume impingement analogy
were the primary cause of the induced loads then plume size and Poj/Pm from equation
2-24 or Herron's parameter (reference 11) would be good correlating parameters.
Figures 4~10 and 4-11 do indeed show that these parameters do correlate with the
data at Mach 4.0 but again the other Mach number data must fall on different curves.

On @ overall basis it appears that momentum ratio is the primary parameter
causing the induced momenis and that all other parameters are secondary.

4,1,1 PLUME IMPINGEMENT EFFECTS - If moment ratio is the primary parameter,
i8it because the plume impingement loads are the predominant effect? In order to
answer this question and to be able to correct the data for the fact that the model
pitch down nozzles were out of scaled position due to model stress requirements,
the plume impingement moments were estimated using the 5 point method (equation
2-20) to define the plume radius at the wing and body flap based on an equivalent
single nozzle (area equal to the sum of individual nozzle areas). lsentropic flow
expansion was assumed from the nozzle to this area. Since the plume Mach number
was high, a modified Newtonian approximation was used to define the stegnation
pressure at the plume centerline, This stagnation pressure was assumed to apply
across the entire plume radius since the buildup of body boundary layer from plume
flow would keep pressures higher than the source flow assumptions of equation 2-25

and it should be a conservative assumption.

Figure 4-12 presents a sample of the arediction of pitching moment resulting from
plume impingement at the Mach 4, Re = 1 x 108/t test condition, Note that

most of it comes from the body flap which is due in part to the pitch jets being in-
board of their scale location, but is also an indication that the primary part of plume
impingement effects is on the body flap and in the base region.

4-3

" “ P . - - $a.
0" o ° EERTI I




-t " . .
: i St e S E

K
S

e e s 2 bbbt Mttt s+ 2

CASD-NAS-73-020

4,1.2 PROPOSED EMPIRICAL MODEL - Since Figure 4-12 showed that most of

the plume impingement occurs in the body base region, the predicted plume impinge-
ment rolling and pitching moments were removed from the incremental data of
Figure 4-1.

AC =4C =C (4~3)
"int 4 "'imp

AC,, =8Cp=-C 4-4
me - Timp (-4

The resultant interaction increments are shown in Figure £-13 as a function of
momentum ratio and from which the expressions

AC, =-0,00012805 [® 0.71236 (4~5)
Ynt =
1.03824
AC =+0, 0002637 [ #1} (4-6)
Mynt o

were derived.

Attempts were made to find ways ot improving the correlation and to correlate
bas:d on the ratio of the interaction increment to jet moment as is done in amplifi-
cation factor, Figure 4-14 shows that this results in much larger scatter at the
low momentum ratios where thrust moments are near gero and no better correla-

tions could be found at this time, Thus, the proposed empirical model of jet
effects is:

4-4
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a)  roll control
1 rolling moment
C =C +C (4=7)
Ypduced *D u

where Cj will be defined in Section 34,3
u

(4-8)
D imp int

‘ C . = predicted impingement rolling moment
1mp

AC, = equation %4-5
Lint

II pitching moment
. c =Cm,_ +Cm (4-9)
& | ™, nduced tmp int
' Cmimp = predicted impingement pitching moment

! 4 AC m equation 4-6
!_ » int

| b)  pitch down control
: C = C + 2(pC 4-10
Mrduced  4mp (&Cmyq) (4-10)

Cm = predicted impingement moments
imp

Acmlnt = equation 4-6
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4,2 EFFECTS OF JET EXHAUSTING PAST FIN~ The data from Langley UPWT runs
54 to 66 was used in this correlation, No Mach 7.4 data was obtained for the single
jet exbausting past the fin, The reaction jets mounted on the right side of the fin
were used so that a positive rolling (right wing down) moment is obtained from the
jet thrust, Figure 4-15 shows that a negative rolling moment is induced on the fin

as well as nose right yawing moment by this half of the roll control. Figure 4-18
shows also that the induced effects are very sensitive to angle of attack and also to
jet pressure. There appears to be an angle of attack near 40 degrees where all the
induced effects disappear.

Figure 4-16 shows that there appear to be correlation of these induced effects with
jet exit momentum ratio but that the angle of attack effects cause a large scatter. A
pumber of correlations were attempted to remove this angle of attack effect without
appreciable success, A correlation of the incremental data ratioed by the RCS
thrust moments against momentum ratio showed that using such a parameter
increases the scatter as the thrust moment approach zero,

Therefore a correlation was made of the peak induced effects against momentum ratio,
Figure 4-17 shows that a rather consistant trend was found for the angle of attack at-.
which the peak incremental loads occur when plotted against jet momentum ratio. An
extrapolation was also made of the data trends above 30 degrees and it appears that
above 39 degrees all induced effects on the fin disappear. A correlation of the peak
rolling and yawing moments was also made against momentum ratio and the following
empirical relationships were obtained:

oy 78545
AC, = - .000087037( =1 (4-11)
)
P P
oC, = o.ooouzm(ﬁ_j__)l’”“ (4-12)
| L7

and these curves are shown in Figure 4-16.

Comparisons were made between the single—iét exnausting upward data and the data
for complete roll control with the jet down data removed, This data showed much

less effectiveness for the jet exhausting upward caused by the down jet effects on the
body (see oil flow data in reference 1), and equation 4-11 was multiplied by

0.46 to account for this coupling effect.

4.2.1 EMPIRICAL MODEL - Equations 4~11 and 4-12 can be combined with
Figure 4-17 to predict the peak yawing moment and rolling moments of the roll

jet exhausting past the fin and the angle of attack at which they ocour, The data

on Figure 4-16 shows a sine curve shape for the data above and below the peak
value angle of attack, Thus, the proposed empirical model for this part of the roll
control becomes:
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8) rolling moment

I

b) yawing moment

I

o> 39°
C% =0 (4-13)
apeak<a<39°
@j
apeakg f 3. from Figure 4-17
= AC” (3%~ _
€, "‘Czp"“‘ < 2 <39'°’peak)) #-14)
AC" = ,46 Acz from equation 4-11
P P
d(dpeak
Cc, =C, sin (Jm S .
et % (2 “peak> L
a> 39
c ed= 0 (4-16)
induc
ap“k<a<39
= 3
Cytuced Acnpsm ( g-(_,g-:;gm)) (4-17)
Acnp from equation 4~12
Q<Qpeak
Cnjnduced = 4Cnp EI (ﬂ — ) (¢-18)
2 o
peak

No plume impingement corrections have been attempted with this data at this time
but such corrections would be important for higher altitude simulations,

T u’i .
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4,3 EFFECTS OF JrTS EXHAUSTING OVER WING

Figure 3-16 showed that the yaw jets did induce a nose up pitching moment and a wing
down rolling moment and the incremental induced data from Langley UPWT runs 1
through 20 as well as two Mach 7 .4 runs were analyzed to see if correlations were
possible for these induced effects, All yaw data was obtained with the yaw jets on

the 1eft side creating a negative (nose left) yawing moment, Figure 4-18 shows that
these jets induced a left wing down (negative) roll and a nose up pitching moment
which increased with increasing angle of attack up to the highest angle tested.

Figure 4-19 shows that there is a correlation with momentum ratio but that the
scatter from other factors,principally angle of attack,is very large. All correlations
of the incremental data showed this large scatter 8o correlations were made with
the incremental data ratioed by the yaw thrust moment as shown in Figure 4-20,

Note the change in signs caused by the negative yaw thrust moment,

Figure 2-21 showed that the angle of attack determined to a large degree the extent
of the wake region at the exit plane of the yaw nozzles and Figure 4-21 shows two
parameters which were generated based on this hypersonic approximation inan
attempt to account for angle of attack effects. The first of these parameters is the
distance along the centerline of the nozzles from the nozzle exits to the edge of the
wake region (Yedge) and the second parameter is a measure of distance from the
plume maximum diameter (Ymax) to the edge of the wake region (Yedge = Ymax)-
The plume distance to the maximum diameter was determined from the five point
method, If (Yedge - Ymax 18 negative the plume tries to penetrate into the flow, if
positive the plume fully expands inside the wake, Figures 4-22 and 4-23 show
correlations of the incremental induced data with these parameters. The data shows
a strong correlation but the momentum ratio or other thrust related effect still must
be taken into account. Figure 4-24 shows the induced data ratioed by thrust moment
again which removes most of the momentum ratio effect on rolling moment data
although adding scatter at low thrust to the pitching moment data. The straight
lines shown on this figure represent the data correlating equations:

.A_CJ- = 0,014026 Y.ﬂ*ﬂ.:!—i‘ﬂ + 0,1395 “-19)
Cn,r equiv
AC
- m » . 0.031956 (Yedsi = Ym"‘) - 0.44956 (4-20)
np dequiv
4-8
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4.4 EMPIRICAL MODEL SUMMARY

Based on the observed data of Section 3 and the data analysis of Section 4, the
recommended empirical model for RCS thrust effects is:

4,4,1 NOSE UP PITCH RCS

Cmgontrol = “thrust (4-21)
4.4.2 NOSE DOWN PITCH RCS
C = Cm,, + aC + 4C (4-22)
Moontrol Pimp "ind
1.0328
- o\
ACpy, =0-0006274 <_L) (4-23)
°Q
Acmimp = predicted impingement (both sides)
4,4,3 ROLL RCS
1 C =C +C +C @ -24)
p 4sontrol Yhrust 4mp  AUnd
:% " C Hmp = predicted impingement (1 jet)
!f cC, =C, +C @-265)
: Yina b ip
P c 0.71236
o C = - Jthrust 0,00012805 ol | (4-26)
p |5zthmst| \e,
1 a) o>3
Cp," 0 (4-27)
‘ b) « <a< 39’
, peak o nf( °1) Figure 4-17
peak
o@
C, =C, sin{ L (32=a_ (4-28)
h Tl ( 2< W~ ))
c o, 96545
aC " Yhrust ( .000040037) (—1 (4-29)
C e,
I ‘thruet'
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?
‘5 v !
1§ ¢) @ <¥peak _
l 4-3 |
C, =4C, sin ( ) S - 2 (#-30 '
by P 2 o ‘
peak
I induced yaw ‘
a) o> 39’
| c. =0 (4-31) ]
’ ‘ nind |
il b opeak< <
C =aC sin (o (. 309-9g -32
: Dnd ( 27\ 39 —agy, )) @
i Cyy 1.0676 ‘
bl 8Cn, = "C""’ .0001216 (il.) (4-33) ,
Ak : ‘thrust' e !
¢) g<a L
1 | C =2Cp sin{ZL —&x (4-34)
f "ind ® (2 “peak )
II induced pitch .
cmme Conymp + Cmy g (4-35)
C = 1 side jet impingement
Mimp o, \1+03624
C_ =0,0002837 { - (4-36)
.' ynd (o @)
1t 4.4.4 YAW RCS
E | 1 ¢ = C (4-37)
~; ‘ ncontto} nthl'llﬂt
" I indured roll
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-Y
= . e __max +,1395) 4
oo i)

Cmyipg = [Conrast é.oamss <__ﬁs9&.§32_“)+ o.uosa) (4-39)

Y edge = f(x,a, Z

noz)

Y = Xmax from equation 2-20
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4,8 SCALING LAWS

The empirical model of the preceeding section broke the total induced load into a
component caused by plume impingement and an induced component and scaling
must account for these two part.. of the total problem. It also appears that the
saling of one does not result in‘he scaling of the other.

45,1 IMPINGEMENT - The empirical impingement model of section 2,3 related
both the plume impingement pressure and area to the plume diameter through
the Newtonian pressure approzimation, and isentropic expansion assumption, The

plume diameter was then specified thrm;%h : parameter which is approximately:
9 .512

* 1
R = R, (.69485)(-A% ) Poy
max ) ( Aj P Qa+ YQM;E; «2418

1
x Q- 81_!-1- GN) . 9976 (4-40)

Thus to obtain a good approximation of the plume impingement loads it would appear
that a scaled nozzle diameter,expansion ratio, exit angle, and chamber pressure to
ambient pressure ratio are required. These requirements do not appear to be
consistant to the scaling required for the interaction part of the problem and it

would appear that impingement data should be obtained with scalegﬁ%zzles ina
vacuum chamber where _P?J_ would be corrected for (1+y M:)' ' . 1t also appears

that the impingement part of all wind tunnel test data should be estimated and corrected
out of the final interaction data.

4,5,2. INTERACTION -~ The empirical model of the preceeding section shows that jet
exit momentum ratio is the primary parameter to be matched to scale pitch data to
full scale and the thrust coefficient {s the basic parameter for yaw data scaling.

The Mach 7.4 pitch data of Figure 4-8 also indicated a possible effect of tempera-
ture ratio as does the jet interaction data of equation 2 -24 although Thayers criteria
indicates that such effects should be small for these monopropellant thrusters.

Sufficient data does not exit trom this test to isolate other parameters and at this
time, the recommended procedure would be to match momentum ratio, thrust ratio,
and temperature ratio in any other test to obtain a scaled nozzle and to correct the
resulting induced data for the predicted scale nozzle impingement to obtain the
interaction increments.
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5.0 AEROTHERMODYNAMIC PERFORMANCE

The severity of the aerodynamic heating during entry is presented in Figure 5-1

which is the reference heating rate to a one foot radius sphere. The heating rate

history was computed from the Convair P5613 computer program, reference 20.

It is noted that during the high aerodynamic heating portion of entry, the pitch and

roll control thrusters are essentially non-operative, while the yaw thrustexs will operate
through the total heat pulse of the induced environment, Therefore, only the effect

of yaw thrusters jet-stream interaction need to be considered in this analysis,

The RCS thrusters located on the aft fuselage pod is shown in Figure 5-2 with

details of the left rear module, a cross section through the pod and the TPS arrange-
ments and average dimensions as obtained from reference 21. As noted the pod

will also include the orbital maneuvering system (OMS) oxydizer and fuel. Each
module will contain 2 monopropellant helium pressurized tanks (hydrazine NoH,)

to supplied 12 RCS thrusters using catalyst beds for propellant decomposition to
provide orbiter pitch, roll and yaw control. The TPS of the pod consists of a
ceramic reusable surface insulation (CRSI) which is a 12 pef mullite material

coated for water-proofing and handling protection. The CRSI is bonded with 88 pef
RTV to a 28 pef foamed elastomeric strain isolator (SI) ped which is, in turn bonded
to the aluminum structure with RTV, The maximum allowable surface temperature
for the CRSI is 2600° F, Also, a minimum thickness of 0,5 inch for CRSI is estab-
lished by handling and fabrication consideration, Sizing of the TPS over the pod was
dore by Rockwell International from theoretical aerodynamic heating simulation using
a maximum temperature limit to the SI pad of 650°F or a 350°F maximum temp-
perature on the aluminum structure during entry. The TPS dimensions shown in
Figure 5-2are representative for the pod. A coating over the CRSL external surface
will have an as/e = 0.6 with ¢ = 0,8, In addition, the TPS will include TG 15000
insulation behind the aluminum structure to protect the RCS compnnents such as the
hydrazine propellant and lines to the maximum temperature limit of 150° F, Further-
more, heaters are required to maintain the propellant above the cold limit of 40°F
during the orbital operation.

In order to parform the RCS module and OMS pod TPS analysis the heat flux experi-
enced during the entry trajectory from the peak yaw thrusters jet-flow field inter-
action is required. The yaw thrusters which are used two at a time were assumed
to b uperative through the majority of the entry trajectory. The wind tumicl data
correlations presented in Section 2 fo. the peak pressure, the corresponding peak
heating and the peak distance from the jets were utilized., Correction for the jet
gas temperature, jet gas molecular weight and jet clustering were also obtained
from the experimental data. The heat transfer results obtained at NASA Ames

3.6 't HWT were then used for the extrapolation to flight,
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The flight jet to free stream momentum parameter ratio, ® /¢ , along with the
corresponding total temperature ratio, T oj/T%, utilized with the experimental
data are shown in Figure 5-3, Also shown is the flight Mach number, M_, and the
momentum ratio which was aimulated at NASA Ames 3.5 Ft HWT, using the 1,5%
scaled RCS thrusters. The jet interaction peak heat transfer coefficient ratioed

to the heating at the stagnation point of a one foot sphere nose radius is shown in
Figure 5-4, based on data at an angle of attack o = 30°, which will be experienced
during most of the entry trajectory. An average jet interaction heat transfer
coefficient which is about 15% of the sphere value is shown to be experienced over
the pod. Exception is in the early phase of the trajectory, where the low free
stream value of pressure will cause a hgher peak. However, as noted in Figure
5-4, due to the much lower heating at the higher altitude, this peak heating level
will be small, Also shown on the figure is the peak heating over the pod without jet
interaction as caused by the wing gortex reattachment stagnation line, neglecting
theeffeotsofMachnnmberandBeymlds mumber, As noted in the heat transfer
data presented in Section 3, a yaw angle g of 5° will double the heating environment.
Therefore, if during entry long transient maneuver induces large yaw angles, this
effect should be considered. The location of the peak over the pod as a function of
entry time is presented in Figure §-5. The results indicate clearly that the peak of
the interaction will be limited mostly to the aft portion of the pod and thet at the high
altitudes the peak will move well upstream over the pod.

5.1 POD STRUCTURAL HEATING

The objective of the TPS thermal analysis was to verify & nominal sizing of the CRSI
assuming an average thickness of 1/2 inch over the pod under the entry heating

loads, In addition, resizing tie CRSI was performed, its thickness being dictated

by the 650° F maximum temperature limit at the foam pad bondline. The thermal en-~
vironment used for the verification was those with and without jet interaction as shown
in Figure 5-4, The transient temperature through the TPS was obtained with the aid
of the Convair P4560 computer program, reference 22. A thermal model of the

TPS was broken down into numerous ncdes and the simulation used the materials
thermal properties data defined in reference 21, A simplified one~dimensional
thermal analvsis was used since the low thermal conductivity of the CRSI and foam pad
will not have much effect in reducing the peak local temperature from lateral conduc~
tion,

The results for the transient external surface temperature of the CRSI are presented
in Figure 5-6 with and without jet interaction and show values which are within the
capability of the material, which is a 2600°F temperatare limit, However, the foam
pad bondline allowable maximum temperature of 650° F will be exceeded in both cases,
as induced from the stagnation line of the wing vortex reattachment (800° F) and the
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the pod. Resizing of the CRSI was then accomplished and the thickness required to

take the peak heat loads from jet-stream inte

Figure 5-7. It should be noted that this CRSI

onlytotheaftporﬁonofthepodandover

peak distance location in Figure 5-5.
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raction is found to be 1-1/4 inches, from
thickness requirement will be applicable
the RCS engine module as indicated by the
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; 3 ' 6.0 FULL SCALE RCS CONTROL EFFECTS

| In order to predict the full scale control effectiveness and induced effects of the
. monopropellant hydrasine reaction control engines during the PRR configuration
ol mummammmmbmmmmoummmmm4ma
: the vehicle geometry data and engine data of Soction 2, the plume impingement

5 model of Section 2.3, and the trajectory data of Figure 2-25. The data was genera-

ted using the mean annual Kennedy reference atmosphere &8 the model atmosphere
%'{gs ‘ for computing the flight conditions along the entry trajectory.

"" The momentum ratio which represents one of the most important scaling parameters
ﬁ é {s shown in Figure 6-1 as a function of Mach number , and is based on nozzle reference

area. msﬁcueahwsmtthemomemmremmﬂylowuﬁwmnnﬂw
1 region of the test results up to a Mach number of 28 which oocurs at an altitude of

‘ ; over 260, 000 feet on the entry trajectory used in this study. Tlus the results up to
b this Mach number lie within the range of the empirical model of Section 4 for the

mmembasedmmmmmratioandwaﬁmmmlywem&u

. Mdurlngﬂaevexyearlyporﬁonoftheenﬁ‘ywherethefreeamamdymb
y pressure is very low, Figure 6-2 presents the thrust coefficient for a single reaction
oontroljetbasedonwugareaasafuncﬂondmuaohnumberwmwwthe
i inoreashgmasnimdeofﬂ:mstforeeseoaerodymmlcformatﬂ:everyhighaltmde-
Mach conditions,

In the longitudinal and lateral-directional control effects presented below, the moments
are referenced to a wing area of 3225 ft2 and are taken about a center of gravity
location at 60% of body length. A wing mean aerodynamic chord of 43,8 ft is used for
pitohing moment reference length and a wing span of 84 feet was used as yaw moment

NI and rolling moment reference length. Two nogzlss were operated for control,
) 6.1 PITCH CONTROL

The empirical model shows that the nose up pitch control jets oreate no interaction
and induce no other aerodynamic loads, thus, the nose up pitch amplification is always

R e

o 1.0mithemqnnudeofﬂnpltchtngmomenttaeqmlto&emtmomeugivenm
E 1 Figure 6-3 as a function of entry Mach mumber,

| The nose down pitoh control moment is given in the empirical model as the sum of
. ) the thrust component, the impingement component, and the interaction component.

5 Figure 6-3 shows the total pitohing moment of the nose down pitch RCS jets as well
: as the impingsment component and the magnitude of the thrust component. The sign
of the thrust component would be nogasive (=) if it were shown on the plot. The total
moment of the nose down pitoh control is nearly zero at all Mach numbers which {s
caused by the nose up lmpingement and interaction moments counteracting the nose
down thrust moment, Figure 6-4 shows that the nose down pitch control has some

6-1
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eﬂecﬁvenusuthelowerm:ohmmmwtcowolmermuexmmwdatthe
highest Mach mumbers, Figure 1-1 showed that the primary use of pitch control is
at the highest Mach mumbers where the controls become ineffective. Figure 6-3
dsoshownﬂ;elugemgmmdedplnmowmgﬂmummm
mmbersunddemons&atuﬁeimpormdobmm scaled plume impingement
Mumestedln&cﬁon4hordertomkebewecﬂmmaoimdeﬁecﬁve-
ness at these high Mach numbers,

6.2 ROLL CONTROL

Therdlcontrddaupresentedmﬁussecﬂmmgenenteduﬂnmm!mlmgbsot
attack during entry given in Figure 2-25. The roll control effectiveness and induced
yaweﬁectmvarysenstﬁvetoangleofattuckthroughequtlons&-zatomz.
Figure 6-5 presents the moxnlwdeotthethmstromumoment, the total rolling
moment, and the magnitude of the impingement moment. The impingement moment
dwayswﬁhopposethethmstmomentwlﬂethetohlmomenthaatbesamesign.
Figure 6-6 shows that the rollirg moment has its lowest effectiveness in the inter-
mmmemmwammmrmnmmbem. This is in large
pnrtduetotheincreasingnomimlangleofa&ck(to%‘)atthehlgheetuach
mumbers, Rolloontroleﬁecﬁvenesswo\ndbesharplyreduoediftheawleofawwk
is less than nominal at these Mach numbers.

Themedpiwhandyawmsedbytheronoomolare shown in Figures 6-7 and
6-8, 'l‘hepitohlsalwayanoaeup(-t)andiecwaedbytherolljetsManeﬁng
downward interacting with the wing flow., The yaw moment is low because of the
hizhandeotmckonthenommalmjeotoryblnwmalmshavethesamengnas
the thrust rolling moment.,

6.3 YAW CONTROL

ThedahofSecﬁismwedmmeyawmpnﬂmeuvery close to 1 and the
empirical model assumes that it is 1.0 which means no induced yaw moment, thus
yawing momenttsequalmmaguuﬁetotheyawthmstshminrigure 6-9,

The yaw contro). does induce a nose up pitohing moment and a wing down rolling
moment as shown in Figures 6-10 and 6-11, The pitohing moment is always nose up
(+) because the yaw jets interact with the flow on the trailing edge of the wing while
the sign of the induced roll is dwayetheumeuthatoftheyawmmstmoment.
Both of these curves peak in the intermediate Maoh range where the correlation para-
meter ((Vedge~ ¥max)/de) becomes more negative as the plume grows larger and
Ymax increases at the higher altitudes, Eventually the size of the plume take the
correlation well beyond the range achieved in these tests. Thus the high Mach data
becomes very doubtful until more test results can extend the data range.
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7.0 POSSIBLE SOLUTIONS TO ADVERSE JET INTERACTION

Sections 4 and 8 demonstrated that there are two major problems with the reaction
control system at its present location; the adverse pitch up which occurs when the
pitch down jets are fired and the adverse roll (and pitch up) induced when the roll
jets are fired, Both effects have been shown to be connected largely to the jet ex~
hausting downward onto the wing and body flap and it is the resolution of these
problems for which the following possible solutions are proposed.

7.1 ALTERNATE LOCATIONS

Three alternate locations are suggested for the RCS as potential solutions to the jet
interaction problems. They are discussed in the following sections.

7.1.1 WINDWARD SURFACE MOUNTING. A full resolution of these problems
oould be achieved if the nozzles firing downward would be moved from the OMS

pod onto the bottom windward surface of the body or body flap. In addition to
eliminating the adverse effects, the lower jets would act as classical jet interaction
controls and should have amplification factors greater than 1. The net result would
be that 1ess fuel would be required or possibly even fewer engines so that a signi-
ficant weight saviags may be ac" “~ved, Location of the RCS thrusters on the
lower surface of the orbiter, h¢ ver, would result in turbulent separated flow due
either to the nozzle cavities or o jet interacilon and high heating would result.
Reference 8 shows however that this increased heating can be and was satisfactorily
handled in actual tests.

7.1.2 FORWARD FUSELAGE UPPER SURFACE, Another possible solution
would be to move the pitch down jets onto the upper surface of the vehicle ahead
of the center of gravity. Roll could be achieved by firing both fore and aft pitch
thrusters on the same side.

7.1.8 LOWER SIDE MOUNT. Assuming that moving the pitch down jets is
acceptable but the two previous locations are not, another possible location would

be to mount these thrusters in separate pods much lower on the vehicle such as
sketched in Figure 7-1. The pods would be located at sufficient height for elevon
and body flap clearance and could be connected to the RCS tankage in the OMS pod.
In this position most of the plume should be exposed to windward side flows and u
strong possibility of positive interaction and amplifications greater than 1 exists.

7.2 GEOMETRIC CONSIDERATIONS

If the nozzles cannot be moved to another location, there are stfll some possible
things which can be done to minimize the adverse effects.

7-1
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7.2.1. HIGHER EXPANSION RATIO NOZZLES, The first solution of this kind
would be to increase nozzle expansionratio. The empirical model generated in
Section 4 showed data correlations with momentum ratio and, for a fixed
% chamber pressure; increasing expansion ratio increases exit Mach number which
3 results in decreasing exit momentum ratio as shown below:
% 2
£ Py M A
® = 111 3 (7-1)
.‘i Q@ Pc Ya M@ Aa !
i
: 1
% ® 2 :
b _51_= K Py, i
i ) !
v A v 1 ,
k i : A
r where K = constant = 5. ’b_i{ A | ﬂ
‘ Y, -1 2 '—Jl—
t; for constant Pgy ; K, =K P(,j
¢ 2
}: .21-3 K __E{.—-—z— Y
37 % LA+ LMZ) — (1-3)
H For example
At y,=18andM =3, 21 =0.221"8K; (7-4)
] ) O '
¥ M=4 . —2L=007862K,
? Also, increasing pitch/roll control expansion ratio is a feasible solution since it is
'r intended to operate at high altitude only where the plumes are highly underexpanded
; and not at low altimude like the yaw thrusters where exit pressure ratios approach 1.
; 7.2.2 SLOT BLOWING, Another method of increasing the effestive nozzle expansion
¢ ratio of the pitch/roll engines is to add two side walls (Figure 7-2) to the sides of the
i thruster module to restrain the plume expansion in the thrust direction by allowing
N ' the plumes to expand in the axial direction.
e 4 !
7 r 7-2 ‘




RN R S Y

PRSP

4 N 1
- 4 .
S s :‘JW”’Q‘V"V‘"’-‘QW" Lo st i

Bealr el ™ 2gU 0 g . 4TI B

.

CASD-NAS-73-020

The slot should cause the plume to spread in an axial direction and less in the span-

wise direction decreasing the plume width at the wing or flap and thus have less
interaction.

7.2.3 BASE SIDE PLATES, Plume impingement in the base region is the largest
impingement moment a8 was shown in Figure 4-12, Thus enclosing the base with
side plates as fllustrated in Figure 7-3.should eliminate this part of the problem
and a net gain in coatrol effectiveness should be the result. These side plates
should not interfere with body flap or nozzle motion and probably do not need to be
as large as shown in this figure.

7.2.4 BODY OR WING FLAPS. Retractable flaps mounted on the side of the body
(Figure 7-4) or on the wing or elevon (Figure 7-5) could possibly work to shield
the wing from plume flow and thus reduce the interaction between the plume and
the wing flow. The wing flap height would be determined by the shock height from
equation 2-21. Figure 7-5 show: two different wing or elevon flap combinations
and the chordwise portion of the "b'"* set could be part of a fixed (or retractable)
wing fence while the spanwise portion would be retractable like a spoiler. Flap
ng" would be retractable. The bedy flap shown in Figure 7-4 would be hinged

at the front edge and would be closed except during early in re-entry when the
pitch/roll ensnes are used. The bottom of the flap will have to clear the elevons
at their full deflection.

7.2.5 WING FENCES. The oil flow pictures of figure 3-23 and 3-30 showed that
most of the interaction appears to ocour near the wing tip, thus, wing fences
such as shown in Figure 7-6 may prove effective in keeping the plume flow from
reaching the tip and/or limiting the region of interaction.
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8.0 CONCLUSIONS

The interaction between reaction ocontrol nystem plumes and flow over the leeward
surfaces of the Shuttle Orbiter vehicle at high angle of attack in supersonic and
hypersonic flow is a very complex interaction. The aerodynamic force and moments
generated by this interaction have been shown to be large relative to the reaction
control system forces and generally counteract the control input, especially when
the plumes impinge on a vehicle surface and the control forcus are reduced or in
some instances reversed.

8.1 STUDY CONCLUSIONS

1.

3.

4.

6.
1.

Cold flow simulation adequately matched temperature ratio of the full
scale hydrazine rockets for force data based on Thayer's criteria.

Data accuracy of moment amplification data was found to be very good with
a predicted scatter of 1ess than 0.1 for most test data.

Yaw oontrol interaction is small however yaw controls do induce unfavor-
able pitch up.

Roll control interactions ave large causing roll reversal at angles of attack
where the fin flow becomes important, very low effectiveness at all angles
of attack, and a nose up pitching moment,

Roll control plume effects on wing are not angle of attack dependent but
correlate best with plume momentum ratio; all other ratius appear to have
lower importance.

Nose up pitch control interactions are small with little unfavorable effects.

Nose down pitch interactions are large causing ptch reversal and appear
to be due primarily to plume impingement interactions on wing and on body
flap.

The heat transfer data obtained indicate that the thermal protection system
would have to be resized at least over the aft portion of the pod due to the
increase in heating from the interaction.

The problem must be examined as two parts:
a) plume impingement
b) plume/Mlow intoraction

because the scaling parameters for these parts are not the same.

8.2 STUDY RECOMMENDATIONS

1.

Further testing to define the pressure and heat transter distributions on
the upper surface of the wing, fuselage side, pod and tall surfaces i8
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required. Mach number and Reynolds number effects should be

simulated. Integration of the surface pressure will determine the

gurface 1oading produced by the jet-stream interaction. The heat transfer
distributions will be important to re-evaluate the thermal protection system
on the wing upper surface tail and aft fuselage side.

A pressure test i8 required because it is more diagnostic than a force test
and will allow better definition of the parameters which aftect the plume
interaction region and the induced pressure resulting from intoraction
allowing the results to be used to develop an empirical model of interaction.

A plume impingement test program should be undertaken in a vaccum
facility such as the NASA-MSFC IBFF using exact scale nozzles to
f3olate the RCS plume impingement induced loads.

RCS yaw controls have a good location although sweeping the thrust vector
10” aft is recommended to reduce the induced pitch up.

RCS nose up pitch control have a good location although a small (10°) roll-.
out of the thrust axis to move the plumie away from the fin would approve
the rolling moment capability.

The RCS nose down pitch roll controls do not have a good location because
plume interactions with the upper wing surface causes adverse pitch/roll
interactions and an alternate location should be sought.

The most desirable alternate location (strictly from control standpoint)
would be to mount the pitch down/roll nozzles on the aft fuselage body
flap so that the nozzles extend through it onto the windward side of the
vehide. All interactioa that would occur would then be positive

Ky 1.,Kp > 1) and no canting would be necessary except if required for
heating. Aero heating in this location is amenable to solution as indicated
in reference 3.

The most desirable location would be on the side of the body just above
the upper elevon limit canted to avold impinging on the upper side of the
body flap. Positive interaction should result.

Other solutions to the pitch down/roll problem might include:

a) Increasing pitch thruster expansion ratio

b) Creating a slot nozzle

c) Forward fuselage upper surface mounting with rol! by both fore and
aft controls firing simultaneously

d) Canting the nozzles to maximize total effectiveness




i

s z
P

AR WA i oo SRS

CASD-NAS-73-020

e) Upper wing surface fixed or retractable chord wise fences to keep
the plume impingement flow from moving forward and spanwise on

wing

Application of "jet interaction" theory to this problem is limited by the fact that

the plume is not isguing from the surface experiencing the primary interaction but

{s rather impinging on it, and that the surface is a leeward surface which to a large
degree is already experiencing separated flow, Thus, it appears that what is
required is a hypersonic test program in which surface pressure is measured in
sufficient detail to ascertain the extent of the interaction region, the pressures
induced by interaction and to isolate the important free stream and nozzle parameters
which control the interaction. Flow visualization runs are also needed to show the
flow patterns which accompany the pressure data so that the contours of flow between
pressure taps can be assessed. Heat transfer data is also very important to assess
the flow impingement interaction effects particularly for the alternate configuration
locations,

- it
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